Arduino Synth Guitar Really Rocks

[Gr4yhound] has been rocking out on his recently completed synth guitar. The guitar was built mostly from scratch using an Arduino, some harvested drum pads, and some ribbon potentiometers. The video below shows that not only does it sound good, but [Gr4yhound] obviously knows how to play it.

The physical portion of the build consists of two main components. The body of the guitar is made from a chunk of pine that was routed out by [Gr4yhound’s] own home-made CNC. Three circles were routed out to make room for the harvested Yamaha drum pads, some wiring, and a joystick shield. The other main component is the guitar neck. This was actually a Squire Affinity Strat neck with the frets removed.

For the electronics, [Gr4yhound] has released a series of schematics on Imgur. Three SoftPot membrane potentiometers were added to the neck to simulate strings. This setup allows [Gr4yhound] to adjust the finger position after the note has already been started. This results in a sliding sound that you can’t easily emulate on a keyboard. The three drum pads act as touch sensors for each of the three strings. [Gr4yhound] is able to play each string simultaneously, forming harmonies.

The joystick shield allows [Gr4yhound] to add additional effects to the overall sound. In one of his demo videos you can see him using the joystick to add an effect. An Arduino Micro acts as the primary controller and transmits the musical notes as MIDI commands. [Gr4yhound] is using a commercial MIDI to USB converter in order to play the music on a computer. The converter also allows him to power the Arduino via USB, eliminating the need for batteries.

Continue reading “Arduino Synth Guitar Really Rocks”

Kitsch-Instrument Pulls a Sonata out of your Dishware

Remember those childhood memories of your grandmother telling you to stop hammering away at her pots and pans? Odds are pretty good that the last time you struck a beat with her dishware, you had a few more years to go before you understood tempo and rhythm. Now that we’re a bit older, [Jiffer Harriman] invites us to return to our kitchen armed not only with those childhood memories, but also a with the Kitsch-Instrument: a suite of solenoids, a controller, and a software pipeline to algorithmically turn your kitchen into a giant percussion instrument.

The Kitsch-Instrument is a modular music system that enables the user to pull a percussive pattern out of his or her everyday kitchen utensils. The percussion hits come from a series of mosfet-driven solenoids that can be fixed onto plates, cups, and other everyday items through a variety of clips. These solenoids are collectively driven by two stacked custom Arduino shields that are, in turn, driven either by hand with a button-interface, or algorithmically with a pattern generated by the graphical programming language, Pure Data.

In designing this project, [Jiffer] and his team intended to bring not just a musical tool to young tinkerers. They also aimed to help educate these young minds with multiple entry points into their project. For top-level users, adding buttons is almost as easy as plug-in-and-play. For experienced circuit designers and tinkerers, the entire project is open source with the board layout and software available for download. Overall the project can be explored from lower and lower levels while still retaining its functionality as a musical interface.

If you suspect that this project seems to have that same whimsical sense as the Auto-Meter-Reader Feeder, you’d be right! [Jiffer] and [Zack] hail from the same lab at the University of Colorado. We’re excited to see what upcoming beats will arise from a truly off-the-shelf symphony.

via the [Tangible Embedded and Embodied Conference]

Continue reading “Kitsch-Instrument Pulls a Sonata out of your Dishware”

Play Music with your Painting Using Teensy

[sab-art], a collaboration between [Sophia Brueckner] and [Eric Rosenbaum], has created a touch-sensitive musical painting. Initially, basic acrylic paint is used for the majority of the canvas. Once that is dry, conductive paint is used to make the shapes that will be used for the capacitive touch sensing. As an added step to increase the robustness, nails are hammered through each painted shape and connected with wiring in the back of the painting. These wires are then connected to the inputs of a Teensy++ 2.0, using Arduino code based on MaKey MaKey to output MIDI. The MIDI is then sent to a Mac Mini which then synthesizes the sound using Ableton Live.  Any MIDI-processing software would work, though. For this particular painting, external speakers are used, but incorporating speakers into your own composition is certainly possible.

A nice aspect of this project is that it can be as simple or as complex as you choose. Multiple conductive shapes can be connected through the back to the same Teensy input so that they play the same sound. While [sab-art] went with a more abstract look, this can be used with any style. Imagine taking a painting of Dogs Playing Poker and having each dog bark in its respective breed’s manner when you touch it, or having spaceships make “pew pew” noises. For a truly meta moment, an interactive MIDI painting of a MIDI keyboard would be sublime. [sab-art] is refining the process with each new painting, so even more imaginative musical works of art are on the horizon. We can’t wait to see and hear them!

Continue reading “Play Music with your Painting Using Teensy”

Turning a Cadenza into a Finishing Move

What do you get when you mix dueling pianos with a 2D fighting game? Undoubtably some complex controls, but also an awesome platform for showmanship! The “Sound Fighter” installation by artists [Cyril] and [Eric] was built with the exact intention that two opposing parties could duke it out in a Street Fighter match with their piano playing abilities mapping into attack combos and dragon-punches.

In order to turn a piano into a glorified arcade stick, [Cyril] and [Eric] would need a way to register when and what notes were being played and then translate that data into commands for the fighting game itself. To start, they did their homework on the inner workings of different piano types. Whatever digital augmentation they were to design would have to work without inhibiting the piano’s function.

There were many possible methods of registering when the piano was being used and though several would have worked for their intended purpose, it took writing down and discussing the pros and cons of each sensor before they made a decision. Some of the options they considered included pressure sensors for the keys themselves, accelerometers to detect the movement of the individual hammers within the piano, and even a microphone to computationally analyze the sound heard from either instrument. In the end they chose to implement small and accurate piezo knock sensors tethered to the internal mechanism of each key. These could register both faint and strong notes when played without altering the natural sound of the instrument.


After deciding on a Street Fighter iteration for the PS2 to develop the rest of the project around, they had to play the actual game a bit to get a feel for the command list of moves. They wanted to conceive of a way to map the notes played to the controller, but not in the direct “key to button” sort of way. The idea was that if someone was good at playing piano, they would also be good at executing moves in game. So they had to sort out how groups of notes and chords would translate into moving the character or attacking.

I highly suggest checking out their in depth play-by-play as they built the installation from the ground up. In addition to being fascinating (they prepared this project in a fight against time for the reopening of a historical site in Paris), you’ll find that everything they developed is opened source. The completed installation is as awesome as it sounds. You can see it in action in an actual duel below:

Continue reading “Turning a Cadenza into a Finishing Move”

Logic Noise: 8-bits of Glorious Sounds

Logic Noise is all about using analog circuits to make sounds. Preferably sound that will be enjoyable to hear and useful for making music. Now, the difference between music, sound, and noise is certainly in the ear of the behearer, but you must admit that last installment’s simple square wave lacked a little something. (Although the sync oscillator circuit extension was kinda cool.)

This week, we’ll take our single wimpy square-wave oscillator and beef it up by adding a bunch of sub-octaves to the mix. And we’ll do it using a chip that’ll be really useful for us in the future as well: the 4040 binary counter chip.

Counters (binary or decimal) are going to be fertile ground for more musical noise experiments. Why so? Because octaves are just doublings or halvings of frequencies, and because a lot of rhythmic patterns have factors of two underlying them.  Just think about the most basic drum pattern you know: bass drum on the one, snare on one and three, and hi-hats on one, two, three, and four. Each different instrument fires off twice as frequently as the one before it.

But for now, enough blabber. We’ve got an oscillator to build.

Continue reading “Logic Noise: 8-bits of Glorious Sounds”

Clocked 8-Bit Random Pattern Generator For a CMOS Synth

A random noise generator is pretty handy when working with music, and building one using a micro-controller can be pretty trivial. So it’s nice when someone comes along and builds it from a few analog and digital parts. [acidbourbon] built his Clocked 8-BIT Random Pattern Generator for  CMOS Synth  inspired and motivated by the recent article Logic Noise: Sweet, Sweet Oscillator Sounds by [Elliot Williams]. It’s 8-bit output can be used as a random sequencer for DIY CMOS synths.
This pattern generator is suited to to be used in combination with a 4051 8-channel analog multiplexer. But it sounds quite interesting on it’s own (best enjoyed in stereo, check out the video after the break). After building some CMOS synth circuits, [acidbourbon] moved on to make some sequencers and multiplexers which then let him to devise this random pattern generator which could be gated using a clock signal.

The basic principle is straight forward – generate noise, amplify it, apply a clock to get the gated noise output. His design choices for the various sections are well explained, based on constraints that he had to work with. Everything needs to work at 5V, but his noise generator circuit requires 12V to work. He choose to use a charge pump to generate -5V, resulting in a 10V supply, which was barely enough, but worked. A boost regulator might probably have served better to generate 12V, but maybe he already had the ICL7660 charge pump IC lying around in his parts bin. The rest of the circuit uses standard CMOS/TTL devices, and [acidbourbon] provides all of the design files for what looks like a neat, single sided PCB that can easily be made using the toner-transfer method.

Video below.

Continue reading “Clocked 8-Bit Random Pattern Generator For a CMOS Synth”

Ask Hackaday: Bringing Your Design to Market

While many of us have made and documented our open source projects, not many of us have tried to sell our design to the masses. [Scott] developed, marketed, and “bootstrapped” a cool looking MIDI controller. Now, before you get your jumpers in a bunch – the project is completely open source. [Scott] documented the entire process of not only the design, but the trials and tribulations of bringing it to market as well. Calculating costs, FCC testing and the many other challenges of bringing a consumer electronics device to market are all detailed in his blog. Join me while we look at the highs and lows of his interesting and eventually worthwhile journey.

Putting yourself into a game where orders are in the tens of thousands, with hundreds of thousands of dollars changing hands is not easy when you’re just a guy with an idea and a soldering iron. [Scott] was up for the challenge, however. He quickly realized that much of the margin is spent on advertising and to cover risk. On his last order, some of the paint was chipping off. He had to fix the paint and repackage everything – all at his cost.

He also talks about the learning process of product design along the way. His original idea was to make a volume controller, but couldn’t sell a single one. He was forced to redesign the software into the MIDI controller as it exists today. He tried to launch a Kickstarter, but was rejected. This turned out to be a good thing, however, because he would have wound up kickstarting a product that didn’t work.

For advertising, he relied on Google and made some extremely detailed tutorials for his product. Many of them can be used for other MIDI controllers, and often come up in Google searches. Smart. Very smart.

Be sure to check out the video below, where [Scott] gets into some capacitive touch design theory, and talks about how not to cut your final product in half while on the CNC.

Have any of you ever tried to mass produce and sell one of your designs? Let us know in the comments!

Continue reading “Ask Hackaday: Bringing Your Design to Market”