Ambilight for your Piano (Hero)

That old upright piano still sounds great, and now it can easily have its own special effects. [DangerousTim] added LED strips which change color when he tickles the ivories. The strips are applied along the perimeter of the rear side of the upright causing the light to reflect off of the wall behind the instrument. This is a familiar orientation which is often seen in ambilight clone builds and will surely give you the thrill of Guitar Hero’s brightly changing graphics while you rock the [Jerry Lee Lewis].

Key to this build is the electret microphone and opamp which feed an Arduino. This allows the sound from the piano to be processed in order to affect the color and intensity of the LED strips. These are not addressable, but use a transistor to switch power to the three colors of all pixels simultaneously.

We think there’s room for some clever derivative builds, but we’re still scratching our heads as to how we’d use addressable pixels. Does anyone know a relatively easy way to take the mic input and reliably establish which keys are being played? If so, we can’t wait to see your ambilight-piano-clone build. Don’t forget to tip us off when you finish the hack!

Making a Player Piano Talk MIDI

[Ramon] was always fascinated with pianos, and when he came across a few player piano rolls in an antique shop, a small kernel of a project idea was formed. He wondered if anyone had ever tried to convert a player piano into a full MIDI instrument, with a computer tickling the ivories with a few commands. This led to one of the best builds we’ve ever seen: a player piano connected to a computer.

[Ramon] found an old piano in Craigslist for a few hundred dollars, and once it made its way into the workshop the teardown began. Player pianos work via a vacuum, where air is sucked through a few pin points in a piano roll with a bellows. A series of pipes leading to each key translate these small holes into notes. Replicating this system for a MIDI device would be impossible, but there are a few companies that make electronic adapters for player pianos. All [Ramon] would have to do is replicate that.

The lead pipes were torn out and replaced with 88 separate solenoid valves. These valves are controlled via a shift register, and the shift registers controlled by an ATMega. There’s an astonishing amount of electronic and mechanical work invested in this build, and the finished product shows that.

As if turning an ancient player piano into something that can understand and play MIDI music wasn’t enough, [Ramon] decided to add a few visuals to the mix. He found a display with a ratio of 16:4.5 – yes, half as tall as 16:9 – and turned the front of the piano into a giant display. The ten different styles of visualization were whipped up in Processing.

display

The piano has so far been shown at an interactive art exhibit in Oakland, and hopefully it’ll make it to one of the Maker Faires next year. There are also plans to have this piano output MIDI with a key scanner underneath all the keys. Very impressive work.

Video below.

Continue reading “Making a Player Piano Talk MIDI”

Capacitive Christmas Organ with Living Lenses of Slappable Light

We’ve seen capacitive touch organs manifest in pumpkin form. Though they are a neat idea, there’s something about groping a bunch of gourds that stirs a feeling of mild discomfort every time I play one. [mcreed] probably felt the same way and thus created this light-up Jello organ, so he can jiggle-slap Christmas carols, removing any sense of doubt that touching food to play music is weird…

This take on the capacitive tone producing instrument makes clever use of the transparent properties of Jello as well as its trademark wiggling. [mcreed] fills several small mold forms with festively colored strawberry and lime mix. One end of a wire connection is submerged in the liquid of each cup before it has a chance to solidify along with a bright LED. Once chilled and hardened, the gelatinous mass acts as a giant light emitting contact pad. An Arduino is the micro-controller used for the brain, assigning each Jello shape with a corresponding note. By holding onto a grounding wire and completing the acting circuit, one can play songs on the Jello by poking, spanking, or grazing the mounds.

Though I’m not entirely sure if the video is Jello propaganda or not, the idea is applaudable. I prompt anyone to come up with a more absurd item to use for a capacitive organ (zucchinis have already been done).

Continue reading “Capacitive Christmas Organ with Living Lenses of Slappable Light”

Sheet Music to MIDI Converter

Learning to read sheet music is a challenge for new musicians, so a group of Cornell students decided to make a robot do it instead. For their final project, they built a robotic sheet music reader (link warning: this page seems to automatically start a .mov file download when loaded).

As an input, the robot takes a piano roll. This is a long strip of paper with music printed on it, which can easily be fed through the reader. A rotational servo keeps the strip feeding at a constant speed, and passes it through the reader.

The reader is based on a Melexis MLX75306 linear optical array. This IC is a 142 x 1 array of photodiodes, which is designed for fuel quality sensing in cars. In this project, it’s been repurposed as a camera to read the music as it passes by. An array of LEDs illuminates the piano roll, providing a more accurate reading.

The components are connected to an Atmel ATmega1284P, which does all the required control and processing. It creates a MIDI output of the piano roll, which can be connected to any hardware or software synthesizer.

Beating the Skins of Oatmeal Tins

Ithaca-based power trio [Nick, Roshun, and Ian] share a love of music and beating on things with drum sticks. To that end (and for class credit), they built a Digitally-Recordable, User-Modifiable Sound Emitting Tool (DRUMSET) using force-sensing resistors housed in oatmeal cans.

Anyone who has dealt with FSRs knows how persnickety they can be. In order to direct the force and avoid false positives, these enterprising beat purveyors suspended a sawed-off 2-liter bottle to the underside of each lid. This directs the force coming in from their patent-pending foam-enhanced drum sticks to the small, round sensing area of the FSR. There’s just enough space between the cap and the FSR to account for the play in the oatmeal can lid drum head when struck.

DRUMSET offers different-sounding kits at the push of a momentary switch. At present, there are four pre-programmed kits: the acoustic and electronic foursomes you’d expect, and a kit of miscellaneous sounds like hand claps and wooden claves that sound like something They Might Be Giants would have used on their first album. The fourth is called ‘Smoke on Water’, and is exactly what it sounds like. Should you tire of these, DRUMSET has a program mode with around 20 samples. These can be cycled through on the LCD and assigned to any of the four drums.

The microphone is for record mode, and whatever is recorded can be mapped to any drum. The memory limitations of the ‘1284P make for a 0.2 second sample of whatever is barked into the mic, but that’s plenty of time for shouting ‘hack!’ or firing off whatever hilarious bodily sound one can muster. We think this four track-like functionality of DRUMSET has interesting recording and live performance implications. The team’s future plans include space for longer samples and more robust drum construction (although it is possible to do this without any drums whatsoever). They’d also like to add more drums in case Neil Peart calls. The beat goes on after the break.

Continue reading “Beating the Skins of Oatmeal Tins”

One Man’s Mini Symphony of Many Strings

If you don’t get along with your orchestra, screw ‘em. [Vladimir Pliassov] proves that you can play each of the virtuosic string instruments yourself, all at the same time (with the exception of the double bass of course).

For the life of me, I can’t imagine how long it took to get situated in this spider’s web of moving parts, but it’s impressive. With the help of this unique mechanical invention all his own, [Vladimir] is able to finger not only the neck of a violin and viola, but also a cello hoisted at an angle below his desk so that he can execute chords with his FEET. To help with the actual sound-making, a complex series of resinous fibers turn on a continuous mill of wooden beams and are tensioned ever so carefully over the bridge of each instrument. [Vladimir] controls which string is making contact with the turning fibers with a pulley wrapped around his thigh that rocks the body of the instrument back and forth.

[Vladimir] gives us an overview of his machine and how it works in the video below. If you’re itching to see it used for the purpose it was created for, well… there’s a video for that too. Even though the quality of the performance suffers a little due to the complicated nature of the setup, [Vladimir] is playing of all things, a piece for the pipe organ by J.S. Bach. Bach being hard mode in any case, let alone the one where you’re playing all the instruments yourself.

Thanks [tinkartank] for pointing out this unique invention. It’s definitely worthy of some awe!

Continue reading “One Man’s Mini Symphony of Many Strings”

Tiptoe Through the Tulips in No Time With Ukule-LED

Take it from someone who has played at the guitar for over 20 years: reading sheet music can be a big stumbling block to musical enjoyment. Playing by ear is somewhat unreliable, tablature only works well if you’re already familiar with the tune and tempo, and pulling melody from chord charts is like weaving fiction from the dictionary. A lot can be said for knowing basic chord formations, but it can be difficult get your fingers to mimic what you see on the page, the screen, or someone else’s fretboard. Enter Ukule-LED, a learning tool and all-around cool project by [Raghav and Jeff] at Cornell.

Ukule-LED uses 16 NeoPixels across the first four positions of the fretboard to teach chord positions. All 16 NeoPixels are connected in series to a single pin on an ATMega1284P, which sits on a board mounted to the bottom of the uke along with power and serial. [Raghav and Jeff] set the NeoPixels below the surface so as not to interrupt playability. The uke can operate in either of two modes, ‘play’, and ‘practice’. In ‘play’ mode, the user feeds it a text file representing a song’s chords, tempo, and time signature. The LEDs show the chord changes in real-time, like a karaoke teleprompter for fingers. In ‘practice’ mode, the user enters a chord through the CLI, and the lights hold steady until they get a new assignment. Knowing which fingers to use where is up to the user.

To add another layer of learning, major chords alight in green, minor chords in red, and 7th chords in blue. These are the currently supported chord types, but the project was built with open, highly extendable Python sorcery available for download and subsequent tinkering. Go on tour after the break.

Continue reading “Tiptoe Through the Tulips in No Time With Ukule-LED”