Teensy and 3D Printer Make Beautiful Music Together

[Otermrelik] wanted to experiment with the Teensy audio library and adapter. That, combined with his 3D printer, led to a very cool looking build of the teensypolysynth. The device looks like a little mini soundboard with sliders and 3D printed knobs. You can see (and hear) it in the video below.

The Teensy audio library supports several output devices including several built-in options and external boards like the audio adapter used here. The library does CD-quality sound, supports polyphonic playback, recording, synthesis, mixing, and more.

Continue reading “Teensy and 3D Printer Make Beautiful Music Together”

Old Part Day: Voltage Controlled Filters

For thirty years, the classic synths of the late 70s and early 80s could not be reproduced. Part of the reason for this is market forces — the synth heads of the 80s didn’t want last year’s gear. The other part for the impossibility to build new versions of these synths was the lack of parts. Synths such as the Prophet 5, Fairlight CMI, and Korg Mono/Poly relied on voltage controlled filter ICs — the SSM2044 — that you can’t buy new anymore. If you can source a used one, be prepared to pay $30. New old stock costs about $100.

Now, these chips are being remade. A new hardware revision for this voltage controlled filter has been taped out by the original hardware designer, and these chips are being produced in huge quantities. Instead of $100 for a new old stock chip, this chip will cost about $1.60 in 1000 unit quantities.

The list of synths and music boxes sporting an SSM2044 reads like a Who’s Who of classic electronic music machines. E-Mu Drumulators, Korg polyphonic synths, Crumars, and even a Doepfer module use this chip in the filter section. The new chip — the SSI2144 — supposedly provides the same classic tone but adds a few improvements such as improved pin layouts, an SSOP package, and more consistent operation from device to device.

This news follows the somewhat recent trend of chip fabs digging into classic analog designs of the 70s, realizing the chips are being sold for big bucks on eBay, and releasing it makes sense to spin up a new production line. Last year, the Curtis CEM3340 voltage controlled oscillator was rereleased, giving the Oberheim OB, Roland SH and Jupiter, and the Memory Moog a new lease on life. These chips aren’t only meant to repair broken, vintage equipment; there are a few builders out there who are making new devices with these rereleased classic synths.

 

Heavy Metal Detectors

Helsinki has a strong underground Heavy Metal scene, so what better way to show it off than to have listeners literally unearth the local sounds themselves with converted metal detectors that play, naturally, Metal? [Steve Maher] built these modified detectors and handed them to a bunch of participants who went on exploratory walks around the city. The tracks from local bands changed as the user moved from one concealed metallic object to the other to create the experience of discovering the hidden soundscape of the land.  Continue reading “Heavy Metal Detectors”

Ultrasonic Raspberry Pi Piano

Cheap stuff gets our creative juices flowing. Case in point? [Andy Grove] built an eight-sensor HC-SR04 breakout board, because the ultrasonic distance sensors in question are so affordable that a hacker can hardly avoid ordering them by the dozen. He originally built it for robotics, but then it’s just a few lines of code to turn it into a gesture-controllable musical instrument. Check out the video, embedded below, for an overview of the features.

His Octasonic breakout board is just an AVR in disguise — it reads from eight ultrasonic sensors and delivers a single SPI result to whatever other controller is serving as the brains. In the “piano” demo, that’s a Raspberry Pi, so he needed the usual 5 V to 3.3 V level shifting in between.

The rest is code on the Pi that enables gestures to play notes, change musical instruments, and even shut the Pi down. The Pi code is written in Rust, and up on GitHub. An Instructable has more detail on the hookups.

All in all, building a “piano” out of robot parts is surely a case of having a hammer and every problem looking like a nail, but we find some of the resulting nail-sculptures arise that way. This isn’t the first time we’ve seen an eight-sensor ultrasonic setup before, either. Is 2017 going to be the year of ultrasonic sensor projects? Continue reading “Ultrasonic Raspberry Pi Piano”

Hackaday Prize Entry: Zappotron Super Sequencer

If you fancy a go at circuit bending, where do you start? Perhaps you find a discarded musical toy at a junk sale and have a poke around, maybe you find the timing circuit and pull it a little to produce a pitch bend. Add a few wires, see what interesting things you can do connecting point A to point B, that kind of thing.

Many of us have spent an entertaining afternoon playing in this way, though it’s probable few of us have achieved much of note. [Russell Kramer] however must have persevered to become a circuit bender par excellence, as his latest project is one of the most accomplished circuit bending projects we’ve seen.

Zappotron Super Sequencer is an analog sequencer. Except that sentence simply doesn’t convey what it really is, it’s an analog sequencer with four sound sources: two tape decks, a 4046 oscillator, and a circuit-bent spelling tutor toy, and its sequencer component is controlled with a Nintendo light gun and a CRT screen.

You might be thinking that you could do all that with relative ease on a modern single board computer, but what makes this project so special is that he’s achieved it using only logic chips and diode logic gates, not a microprocessor in sight save for the one in the spelling toy. The build log goes through all the circuitry in detail, and we have to tell you it’s a work of art that demonstrated his mastery of both analog circuitry and digital logic.

To cap it all off he’s mounted it in a gloriously retro console, complete with retro embossed labeling. This is a high-quality item that we’d suggest you take a while to read about in detail. He’s posted a video demonstration if you’d like to see it in action, we’ve posted it below the break.

Continue reading “Hackaday Prize Entry: Zappotron Super Sequencer”

Musical String Shooter Makes Sound Visible

One reason we really like [Rulof]’s hacks is that he combines the most unlikely things to create something unexpected. This time he makes a fast-moving loop of cotton string undulate in time to music.

To do this he uses cotton string, hard drive parts, two wheels from a toy Ferrari, two DC motors, a plastic straw,  a speaker, and an amplifier.  The loop of string sits in the air by being rapidly rotated in between the two wheels. The hard drive parts, driven by the amplifier, give the string a tap with an amplitude, and at a time determined by the music. The result is music made visible in the air in front of you, or in his living room in this case. Check out how he made it, and see it in action in the video below the break.

Continue reading “Musical String Shooter Makes Sound Visible”

The Smallest Wave Blaster Card

In the early 90s, the Creative Sound Blaster was the soundcard. It wasn’t the absolute best sounding card on the market, but it quickly became the defacto standard and delivered good sound at the right price. It relied primarily on the Yamaha OPL-3 FM synthesis chip, but if you were feeling spendy, you could pimp it out with a Wave Blaster add-on card, which essentially bolted a sample synthesis engine onto the card. This gave the card a broad palette of sampled instruments with which to play MIDI tunes all the sweeter, so you could impress your grade school chums who came over to play DOOM.

It’s now 2017, if you hadn’t checked the calendar, and Sound Blasters from yesteryear are only going to go further upward in price. It goes without saying that add-on daughterboards and accessories are even rarer and are going to be priced accordingly. So, if you’re building a vintage gaming rig and are desperate for that sample-synth goodness, [Serdashop] are here to help with their latest offering, the Dreamblaster S2.

It’s reportedly the smallest Wave Blaster add-on board available, which is awesome. If you’re sticking it on top of your Sound Blaster 16, yes, it’s pointless – you’re not exactly short on room. But if you want to integrate this with a compact microcontroller project? Size matters. Yes, you can feed this thing MIDI signals and it’ll sing for you. A hot tip for the uninitiated: MIDI speaks serial, just like everything and everyone else. Your grandma learned to speak it in the war, you know.

Your options for hooking this up are either slotting it into a Wave Blaster compatible card, or buying the carrier board that allows you to use it with a Game Port, in addition to custom-wiring it to your own hardware. We’d love to see this as a HAT for the Raspberry Pi Zero. Do it, send it in and we’ll write it up.

We’ve seen [Serdashop]’s hardware here before – namely, the earlier Dreamblaster X2. Video below the break.

Continue reading “The Smallest Wave Blaster Card”