Amateur Radio Just Isn’t Exciting

As ARRL president, [Rick Roderick, K5UR] spends a significant amount of time proselytising the hobby. He has a standard talk about amateur radio that involves tales gleaned from his many decades as a licence holder, and features QSL cards from rare DX contacts to show how radio amateurs talk all over the world.

He’s delivered this talk countless times, and is used to a good reception from audiences impressed with what can be done with radio. But when he delivered it to a group of young people, as Southgate ARC reports, he was surprised to see a lack of interest from his audience, to whom DX or contesting just don’t cut it when they have grown up with the pervasive Internet. Writing in the 2016 ARRL Annual Report, he said:

“Change generally doesn’t come easy to us. But when I looked out at that group of young faces and saw their disinterest in traditional ham pursuits, I realized that I had to change. We have to change. It won’t come easy, but it’s essential that we get to work on it now.”

If you were to profile a typical group of radio amateurs, it would not be difficult to see why [K5UR] found himself in this position. It might be an unflattering portrait for some amateurs, but it’s fair to say that amateur radio is a hobby pursued predominantly by older more well-off men with the means to spend thousands of dollars on commercial radios. It is also fair to say that this is hardly a prospect that would energize all but the most dedicated of youthful radio enthusiasts. This is not a new phenomenon, where this is being written it was definitely the case back in the days when they were issuing G7 callsigns, for instance.

Were Hackaday to find ourselves in the position of advising the ARRL on such matters, we’d probably suggest a return to the roots of amateur radio, a time in the early 20th century when it was the technology that mattered rather than the collecting of DXCC entities or grid squares, and an amateur had first to build their own equipment rather than simply order a shiny radio before they could make a contact. Give a room full of kids a kit-building session, have them make a little radio. And lobby for construction to be an integral part of the licensing process, it is very sad indeed that where this is being written at least, the lowest tier of amateur radio licence precludes home-made radio equipment. Given all that, why should it be a surprise that for kids, amateur radio just isn’t exciting?

We’ve shown you some fantastic amateur radio builds over the years. If you have a youngster with an interest in radio, show them a BitX transceiver, or the world of QRP.

Header image: enixii. [CC BY 2.0]. We hope these snoozing kids aren’t in the middle of a lecture on amateur radio.

Serious DX: The Deep Space Network

Humanity has been a spacefaring species for barely sixty years now. In that brief time, we’ve fairly mastered the business of putting objects into orbit around the Earth, and done so with such gusto that a cloud of both useful and useless objects now surrounds us. Communicating with satellites in Earth orbit is almost trivial; your phone is probably listening to at least half a dozen geosynchronous GPS birds right now, and any ham radio operator can chat with the astronauts aboard the ISS with nothing more that a $30 handy-talkie and a homemade antenna.

But once our spacecraft get much beyond geosynchronous orbit, communications get a little dicier. The inverse square law and the limited power budget available to most interplanetary craft exact a toll on how much RF energy can be sent back home. And yet the science of these missions demands a reliable connection with enough bandwidth to both control the spacecraft and to retrieve its precious cargo of data. That requires a powerful radio network with some mighty big ears, but as we’ll see, NASA isn’t the only one listening to what’s happening out in deep space. Continue reading “Serious DX: The Deep Space Network”

RF Noise Floor Concerns From Both Sides Of The Atlantic

Our feed is full of stories about the RF noise floor today, and with good reason. The ARRL reports on the International Amateur Radio Union Region 1 president, [Don Beattie, G3BJ] warning that in densely populated parts of Europe there is a danger that parts of the RF spectrum have become so swamped with noise as to be rendered unusable, while on the other side of the Atlantic we have RadioWorld reporting on similar problems facing AM broadcasting in the USA.

At issue are the usual suspects, interference from poorly shielded or suppressed domestic electronic devices, VDSL broadband, power-over-Ethernet, solar and wind power systems, and a host of other RF-spewing electronics. The combined emissions from all these sources have raised the noise level at some frequencies to the point at which it conceals all but the strongest signals. Any radio amateur will tell you that a station in a rural location will be electrically much quieter than one in a city, it seems that this effect has now reached a crescendo.

In the RadioWorld article, the author [Tom F. King] and his collaborator [Jack Sellmeyer] detail a series of tests they performed on a selection of lighting products from a quality brand, bought at a local Home Depot store. They were gathering data for a submission to the FCC enquiry on the noise floor issue we reported on last year. What they found was unsurprising, significant emissions from all the products they tested. They make some stiff recommendations to the FCC and other bodies concerned with radio spectrum to get tough with offending devices, to stay on top of future developments, and for operators of AM stations to pursue sources of interference.

It could be that there is so much equipment contributing to the noise floor that this battle is lost, but it doesn’t have to be this way. Anyone who has had to prepare a product to pass a properly carried out EMC test will tell you that the requirements are stringent, and it is thus obvious that many manufacturers are shipping products unworthy of the certification they display. It is to be hoped that the authorities will begin to take it seriously before it becomes an order of magnitude worse.

Compliance label image, Moppet65535 [CC BY-SA 3.0].

Paul Horowitz and the Search for Extra Terrestrial Intelligence

I recently had the opportunity to attend a lecture by Harvard Professor Paul Horowitz. It’s a name you likely recognize. He is best known for his iconic book the Art of Electronics which is often referred to not by its name but by the last names of the authors: “Horowitz and Hill”.

Beyond that, what do you know about Paul Horowitz? Paul is an electrical engineer and physicist and Paul has spent much of his storied career learning and practicing electronics for the purpose of finding intelligent extra terrestrial life.

Continue reading “Paul Horowitz and the Search for Extra Terrestrial Intelligence”

Flush Out Car Thieves with a Key Fob Jammer Locator

We all do it — park our cars, thumb the lock button on the key fob, and trust that our ride will be there when we get back. But there could be evildoers lurking in that parking lot, preventing you from locking up by using a powerful RF jammer. If you want to be sure your car is safe, you might want to scan the lot with a Raspberry Pi and SDR jammer range finder.

Inspired by a recent post featuring a simple jammer detector, [mikeh69] decide to build something that would provide more directional information. His jammer locator consists of an SDR dongle and a Raspberry Pi. The SDR is set to listen to the band used by key fobs for the continuous, strong emissions you’d expect from a jammer, and the Pi generates a tone that varies relative to signal strength. In theory you could walk through a parking lot until you get the strongest signal and locate the bad guys. We can’t say we’d recommend confronting anyone based on this information, but at least you’d know your car is at risk.

We’d venture a guess that a directional antenna would make the search much easier than the whip shown. In that case, brushing up on Yagi-Uda antenna basics might be a good idea.

Hackaday Prize Entry: Open Narrowband RF Transceiver

We have so many options when we wish to add wireless control to our devices, as technology has delivered a stream of inexpensive devices and breakout boards for our experimentation. A few dollars will secure you all your wireless needs, it seems almost whatever your chosen frequency or protocol. There is a problem with this boundless availability though, they can often be rather opaque and leave their users only with what their onboard firmware chooses to present.

The Open Narrowband RF Transceiver from [Samuel Žák] promises deliver something more useful to the experimenter: an RF transceiver for the 868 or 915MHz allocations with full control over all transmission parameters. Transmission characteristics such as frequency, bandwidth, and deviation can be adjusted, and the modulation and encoding schemes can also be brought under full control. Where a conventional module might simply offer on-off keying or frequency shift keying, this module can be programmed to deliver any modulation scheme its chipset is capable of. Spread-spectrum? No problem!

Onboard, the device uses the TI CC1120 transceiver chip, paired with the CC1190 front end and range extender. Overseeing it all is an ST Microelectronics STM32F051 microcontroller, which as you might expect is fully accessible to programmers. Interfaces are either USB, through an FTDI serial chip, or directly via a serial port.

There are a host of transceiver chips on the market which just beg to be exploited, so it is very good indeed to see a board like this one. It’s worth noting though that the CC1120 has a much wider frequency band than that of the CC1190, and with a different front end and PA circuitry, this could cover other allocations including some amateur bands.

Rescuing A Proprietary Battery Pack With A Cell From A Camera

If you have an older handheld battery-powered device, you may be fighting a diminishing battery capacity as its lithium-ion cells reach the end of their life. And if you are like [Foxx D’Gamma], whose device is an Alinco DJ-C7 handheld transceiver, you face the complete lack of availability of replacement battery packs. All is not lost though, because as he explains in the video below the break, he noticed that a digital camera battery uses a very similar-sized cell, and was able to graft the camera battery into the shell of the Alinco pack.

Cracking open the Alinco pack, he was rewarded with the rectangular Li-Ion cell and two PCBs, one for the connector and another for the battery management circuitry. By comparison the camera battery had a much smaller battery management PCB, and it fit neatly into the space vacated by the Alinco cell once those covers had been removed. A fiddly soldering job to attach the connector PCB, and he was rewarded with a working Alinco pack and an unexpected bonus when he found out that the transceiver was a dual band model.

Along the way he’s at pains to point out the safety aspects of handling Li-Ion cells, and to ensure that the polarity of the cell is correct. It’s also worth our reminding readers that these packs must always be accompanied by their battery management circuitry. The result though is pleasing: a redundant piece of equipment made obsolete by a proprietary battery, given a new lease on life.

Continue reading “Rescuing A Proprietary Battery Pack With A Cell From A Camera”