Resurrection — Pressing WW2 Radio Equipment Back into Service

Mass production was key to survival during the Second World War. So much stuff was made that there continues to be volumes of new unpacked stuff left over and tons of used equipment for sale at reasonable prices. Availability of this war surplus provided experimenters in the mid 20th century with access to high performance test equipment, radio equipment, and high quality components for the first time.

Even today this old stuff continues to motivate and inspire the young generations because of its high build quality, unique electro-mechanical approaches, and overall innovative designs which continue to be relevant into the 21st century. In this post we will show you how to get started in the hobby of resurrecting WW2 radio equipment and putting it back on the air.

Continue reading “Resurrection — Pressing WW2 Radio Equipment Back into Service”

A Vintage Interface For A Modern Radio

The arrival of affordable software defined radio technologies over the last couple of decades has completely changed the way that radio amateurs and other radio enthusiasts approach the airwaves. There’s a minor problem with most software defined receivers though, being by their nature software driven they will usually rely on a host computer for their interface. Thus the experience is one of clicking mouse buttons or using keyboard shortcuts rather than the mechanical analogue dial interfaces that provided easy control of older radios.

Meccano encoder mounts for the win!
Meccano encoder mounts for the win!

This is a problem that has been addressed by [Jon Hudson, G4ABQ], with one of his SDRplay receivers. He’s mounted it and its control PC in the chassis of a very aged and non-functional Marconi CR100 communication receiver, and given it a control interface that only uses the Marconi’s front panel controls (YouTube link). A rotary encoder has been grafted onto the Marconi tuning capacitor with what looks like some Meccano, and in turn that feeds an Arduino which behaves as a keyboard for the benefit of the PC. Some extra buttons have been added for mode selection, spectrum zoom and shift, and care appears to have been taken to give their labels a period feel. Arduino code came courtesy of [Mike Ladd, KD2KOG]. The result is a very controllable SDR receiver, albeit one in a rather large case.

If you are interested in the project then we are told that it will be on the RS stand at Electronica in Munich next week, meanwhile we’ve put the video below the break.

Continue reading “A Vintage Interface For A Modern Radio”

HFSat and The All-HF Amateur Radio Satellite Transponder

One facet of the diverse pursuit that is amateur radio involves the use of amateur radio satellites. These have a long history stretching back to the years shortly after the first space launches, and have been launched as “piggy-back” craft using spare capacity on government and commercial launches.

Though a diverse range of payloads have been carried by these satellites over the years, the majority of amateur radio satellites have featured transponders working in the VHF and UHF spectrum. Most often their links have used the 2m (144 MHz) and 70cm (430MHz) bands. A few have had downlinks in the 10m (28MHz) band, but this has been as far as they have ventured into the HF spectrum.

A new cubesat designed and built by trainees at the US Naval Academy promises to change all that, because it will feature an all-HF transponder with a 15m (21MHz) uplink and a 10m downlink. To that end it will carry a full size 10m wire dipole antenna. The 30KHz wide transponder is an inverting design intended to cancel out the effects of Doppler shift. In their write-up they provide a fascinating description of many aspects of cubesat design, one which should be of significant interest beyond the world of amateur radio.

If the subject of amateur radio in space interests you, have a look at our series on the matter, first covering the OSCAR satellites, and then our recent feature on its use in manned missions.

[via Southgate ARC]

Hams in Space Part 2: The Manned Spaceflights

Whether it’s trying to make contacts across the planet with a transmitter that would have a hard time lighting an LED, or blasting signals into space and bouncing them off the moon, amateur radio operators have always been on the forefront of communications technology. As mankind took to space in the 1950s and 1960s, hams went along for the ride with the first private satellites. But as successful as the OSCAR satellites were, they were still at best only beacons or repeaters in space. What was needed was the human touch – a real live operator making contacts with people on the ground, showing the capabilities of amateur radio while generating public interest in the space program. What was needed was a ham in space. Continue reading “Hams in Space Part 2: The Manned Spaceflights”

Put That Amateur Radio License to Use on 915 MHz

Amateur radio enthusiasts in the US will be interested in Faraday, an open-source digital radio that runs on 915 MHz, which amateur radio enthusiasts may know better as the 33 cm band.

You can transmit on 915 MHz without a license (in the US), taking advantage of the Industrial, Scientific, and Medical (ISM) exemption. This means that there’s commodity hardware available for sending and receiving, which is a plus. But you can’t do so with any real power unless you have an amateur radio license. And that’s what makes Faraday interesting — it makes it very easy to transmit and receive digital data, with decent power and range, if you’re licensed. The band is currently under-utilized, so go nuts!

The hardware design and documentation is online, and so is the firmware. The founders of the project would like you to build out a big network of these devices, possibly meshing them together. Our only regret is that the 33 cm band is only really open for use in the US, both with a license and without. Of course, there’s very little the Faraday team can do about that.

We’re no strangers to digital-mode amateur radio around here. But if you’re an amateur who hasn’t played around with digital modes yet, this might be a good way to get your feet wet.

Thanks to [Daniel] for the tip!

The BITX Transceiver Comes Of Age

There was a time when the idea of building your own single-sideband transceiver was too daunting for all but the most hardcore of amateur radio constructors. After all the process of creating SSB is complex enough in itself without adding the extra complexity of a receiver and the associated switching circuitry.

In 2003 an Indian radio amateur, [Ashhar Farhan], [VU2ESE] changed all that. His BitX SSB transceiver used a bidirectional amplifier design and readily available components such that it could be built by almost anyone using dead bug construction techniques for an extremely reasonable price.

Over the years since [Ashhar] first published his circuit, his design has been taken and enhanced, been presented in kit form, and extended to other bands by multiple other radio amateurs. Until now though it seems as though he himself has taken very little advantage of his work.

It is therefore with great interest that we note a new 40-meter BitX transceiver on the market from a company founded by the man himself. The transceiver itself is an Indian-assembled PCB with an updated circuit using a 12 MHz IF, varicap tuning, and large surface-mount components for easy modification. Just as with the original circuit, there is a full technical run-down of its operation should you wish to build one yourself. For a rather impressive $45 though you might wish to put down the soldering iron, it looks very much worth the wait for international postage.

We don’t often feature commercial product launches here on Hackaday, though we are besieged by people trying to persuade us to do so. So why this one? When the creator of a design that has been as significant as the BitX has been to its community of builders releases a new version it is newsworthy in itself, and if they are commercializing their work then they deserve that reward.

We’ve featured the BitX here in the past, with a rather impressive dead-bug build, and a look at a multiband version. We’re sure that this design thread has more to deliver, and look forward to more.

Thanks [WB9FLW] for the tip.

A Lot Of WiFi Power, A Yagi, And A Sniper’s ‘Scope

Do you remember the early days of consumer wireless networking, a time of open access points with default SSIDs, manufacturer default passwords, Pringle can antennas, and wardriving? Fortunately out-of-the-box device security has moved on in the last couple of decades, but there was a time when most WiFi networks were an open book to any passer-by with a WiFi-equipped laptop or PDA.

The more sophisticated wardrivers used directional antennas, the simplest of which was the abovementioned Pringle can, in which the snack container was repurposed as a resonant horn antenna with a single radiator mounted on an N socket poking through its side. If you were more sophisticated you might have used a Yagi array (a higher-frequency version of the antenna you would use to receive TV signals). But these were high-precision items that were expensive, or rather tricky to build if you made one yourself.

In recent years the price of commercial WiFi Yagi arrays has dropped, and they have become a common sight used for stretching WiFi range. [TacticalNinja] has other ideas, and has used a particularly long one paired with a high-power WiFi card and amplifier as a wardriver’s kit par excellence, complete with a sniper’s ‘scope for aiming.

The antenna was a cheap Chinese item, which arrived with very poor performance indeed. It turned out that its driven element was misaligned and shorted by a too-long screw, and its cable was rather long with a suspect balun. Modifying it for element alignment and a balun-less short feeder improved its performance no end. He quotes the figures for his set-up as 4000mW of RF output power into a 25dBi Yagi, or 61dBm effective radiated power. This equates to the definitely-illegal equivalent of an over 1250W point source, which sounds very impressive but somehow we doubt that the quoted figures will be achieved in reality. Claimed manufacturer antenna gain figures are rarely trustworthy.

This is something of an exercise in how much you can push into a WiFi antenna, and his comparison with a rifle is very apt. Imagine it as the equivalent of an AR-15 modified with every bell and whistle the gun store can sell its owner, it may look impressively tricked-out but does it shoot any better than the stock rifle in the hands of an expert? As any radio amateur will tell you: a contact can only be made if communication can be heard in both directions, and we’re left wondering whether some of that extra power is wasted as even with the Yagi the WiFi receiver will be unlikely to hear the reply from a network responding at great distance using the stock legal antenna and power. Still, it does have an air of wardriver chic about it, and we’re certain it has the potential for a lot of long-distance WiFi fun within its receiving range.

This isn’t the first wardriving rifle we’ve featured, but unlike this one you could probably carry it past a policeman without attracting attention.