Arduino Translates Signals Between Steering Wheel Buttons and Aftermarket Head Unit

There is no question that steering wheel mounted controls are super convenient. Reaching all the way over to the dashboard to change a radio station is so 1990’s. An ever-increasing percentage of new cars are coming equipped with steering wheel controls for the stereo, however, you’ll lose the button control if you change out the stock head unit to something a little higher in quality. Sure, there may be an adapter readily available for your car/stereo combination, but there also may not be. [Ronnied] took the DIY road and made his own adapter.

The first obstacle for [Ronnied] was to figure out the wiring on the steering wheel controls. After some poking around he found that there were only two wires used for all of the control buttons, each button only changing the resistance between the two wires. The button states could easily be read by using an Arduino’s analog input. A Pro Mini model was chosen for its small size as it could be housed in the radio compartment of the dash.

The next step was getting the Arduino to control the aftermarket head unit. [Ronnied] did some research regarding JVC’s Stalk digital control interface but came to the conclusion that it would be easier to direct wiring the Arduino outputs to the appropriate spot on the head unit’s circuit board. To do this the button for each function that would also be represented on the steering wheel was traced out to find a common point on the circuit board. Jumper wires soldered to the circuit board simply allow the Arduino to emulate button pushes. To ensure that the head unit buttons still work in conjunction with the steering wheel buttons, the Arduino would have to keep the pins as inputs until a steering wheel button was pushed, the pin changed to an output, the signal sent and the pin changed back to an input. This feature was easily created in the Arduino sketch.

Video below.

Continue reading “Arduino Translates Signals Between Steering Wheel Buttons and Aftermarket Head Unit”

THP Semifinalist: A Continuous Wave Radar

There aren’t many Hackaday Prize entries playing around in RF, save for the handful of projects using off the shelf radio modules. That’s a little surprising to us, considering radio is one of the domains where garage-based tinkerers have always been very active. [Luke] is bucking the trend with a FM continuous wave radar, to be used in experiments with autonomous aircraft, altitude finding, and synthetic aperture radar imaging.

[Luke]’s radar operates around 5.8-6 GHz, and is supposed to be an introduction to microwave electronics. It’s an extremely modular system built around a few VCOs, mixers, and amplifiers from Hittite, all connected with coax.

So far, [Luke] has all his modules put together, a great pair of cans for the antennas, everything confirmed as working on his scope, and a lot of commits to his git repo.

You can check out [Luke]’s demo video is available below.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Continue reading “THP Semifinalist: A Continuous Wave Radar”

THP Semifinalist: Cheap Satellite Transponder

In 2016, a communications satellite will be launched into geostationary orbit somewhere over the middle east. Normally, this is fairly ordinary occurrence. This satellite, however, will be carrying two amateur radio transponders for hams all across europe, africa, the middle east, and India. [2FTG] is building a satellite transponder to talk to this satellite, and he’s doing it with junk sitting around his workbench.

The uplink frequency for this satellite will be in the neighborhood of 2.4 GHz, and [2FTG] needed a way to deal with the out of band interference in this part of the spectrum. The easy and cheap way to do this is with filters made for the WiFi band. Instead, [2FTG] had a few cavity filters in his junk box and decided to go that route. It meant he had to retune the filters, a process that should be annoyingly hard. [2FTG] did it in thirty minutes.

Antennas are another matter, but since [2FTG] has a supply of metal coffee cans, this part of the build was just a matter of soldering a bit of wire to an SMA connector, drilling a hole (using a log as a drill stop, no less), and soldering the connector to the can.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Continue reading “THP Semifinalist: Cheap Satellite Transponder”

THP Hacker Bio: Michael R Colton

With many hackers out there realizing how much you can do with a few RF blocks connected to a computer, it’s no surprise software defined radio would make a showing in the semifinalists for The Hackaday Prize. [Michael]’s project is the PortableSDR, a small, self-contained unit that handles just about everything below 30MHz. No, [Michael] isn’t dealing with gigahertz accessible with fancier SDRs, but that’s not the point: PortableSDR is meant to do everything – vector analysis, a neat waterfall display, transmit and receive – in a small, portable package you can take anywhere. It’s also fairly cheap to build, and of course completely open source.

This isn’t [Michael]’s first rodeo; he’s built a number of equally cool projects before. He was kind enough to send in a short bio, available below.

Continue reading “THP Hacker Bio: Michael R Colton”

THP Semifinalist: The Moteino

One of the apparent unofficial themes of The Hackaday Prize is the Internet of Things and home automation. While there were plenty of projects that looked at new and interesting ways to turn on a light switch from the Internet, very few took a good, hard look at the hardware required to do that. [Felix]’s Moteino is one of those projects.

The Moteino is based on the Arduino, and adds a low-cost radio module to talk to the rest of the world. The module is the HopeRF RFM12B or RFM69. Both of these radios operate in the ISM band at 434, 868, or 915 MHz. Being pretty much the same as an Arduino with a radio module strapped to the back, programming is easy and it should be able to do anything that has been done with an ATMega328.

[Felix] has been offering the Moteino for a while now, and already there are a few great projects using this platform. In fact, a few other Hackaday Prize entries incorporated a Moteino into their design; Plant Friends used it in a sensor node, and this project is using it for texting and remote control with a cell phone.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Extrinsic Motivation: BASIC For Bluetooth

There’s a lot more to those fancy radio modules you use with your Arduino projects than meets the eye. Many of them are systems on a chip, complete with their own microcontroller and memory that can control your entire blinking LEDs project. Developing for these radio modules is a bit of a challenge, as the IDEs and compilers cost several thousand dollars. [Tim]’s entry for the Hackaday Prize looks at one of these Bluetooth LE modules – Texas Instrument’s CC2540 and CC2541 – and puts an embedded BASIC interpreter right on the chip.

[Tim]’s inspiration for this project came from looking at a few popular devices using the CC254X chip. Many of these included a microcontroller and the added costs, complexity, and power requirements that come along with an additional chip. This radio module could easily run any code an ATMega could, and adding another chip to a product seemed like a terrible waste, and certainly not in the spirit of open hardware and software.

The alternative is writing an interpreter for the CC254X chip. He’s chosen BASIC, but added a little bit of Arduino language syntax to make it even easier to develop on. Having already run through a few successful tests involving SPI, I2C and 1-wire devices, [Tim] has a basic system working, but [Tim] admits it does need a little rework to make it easier to use.

It’s a great project, and personally astonishing that it didn’t make the quarterfinal selection for The Hackaday Prize. [Tim] is still working on his project, though, in a great example of extrinsic motivation; he doesn’t need a trip to space to convince him to build something cool.

You can check out [Tim]’s two minute concept video below.


SpaceWrencherThis project is an official entry to The Hackaday Prize that sadly didn’t make the quarterfinal selection. It’s still a great project, and worthy of a Hackaday post on its own.

Continue reading “Extrinsic Motivation: BASIC For Bluetooth”

THP Semifinalist: Level, The Ultrawideband Radio Module

LEVEL

When you start looking into the Internet of Things, the first thing you realize is that despite there being grand ideas for Internet connected everything, nobody knows how these things will actually connect to the Internet. There are hundreds of different radio protocols being pushed, and dozens of networking schemes currently in development. The solution to this is a radio module that can do them all, talking to all these modules and serving them up to the Internet. This is the idea of [Hunter Scott]’s Level, a radio module with a frequency range of 30 MHz to 4.4 GHz. That’ll cover just about everything, including some interesting applications in the TV whitespace.

[Hunter]’s module is based around TI’s CC430, basically an MSP430 microcontroller and a CC1101 transceiver smooshed together into a single piece of silicon. There’s bit of filtering that makes this usable in the now sorta-empty TV whitespace spectrum, something that a lot of IoT and wireless networking protocols are looking at.

If the form factor of the device looks familiar, that’s because it is; the board itself is Arduino compatible, but not with Arduinos themselves; it will accept shields, though, meaning building a bridge to Ethernet or WiFi to whatever radios this board is talking to is really just a change in firmware.

This board is excellent for experimenting with different radio modules, yes, but it’s also great for experimenting with different radio protocols. [Hunter] has been looking around at different mesh networking protocols.

You can check out [Hunter]’s two minute video overview, along with a more detailed overview of the schematic below.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Continue reading “THP Semifinalist: Level, The Ultrawideband Radio Module”