How To Receive Pictures From Spaaace!

The International Space Station, or ISS, has been in orbit in its various forms now for almost twenty years. During that time many of us will have stood outside on a clear night and seen it pass overhead, as the largest man-made object in space it is clearly visible without a telescope.

Most ISS-watchers will know that the station carries a number of amateur radio payloads. There are voice contacts when for example astronauts talk to schools, there are digital modes, and sometimes as is happening at the moment for passes within range of Moscow (on Feb. 14, 11:25-16:30 UTC) the station transmits slow scan television, or SSTV.

You might think that receiving SSTV would be hard work and require expensive equipment, but given the advent of ubiquitous mobile and tablet computing alongside dirt-cheap RTL-SDRs it is now surprisingly accessible. An Android phone can run the SDRTouch software defined radio app as well as the Robot36 SSTV decoder, and given a suitable antenna the pictures can be received and decoded relatively easily. The radio must receive 145.8MHz wideband FM and the decoder must be set to the PD120 PD180 mode (Thanks [M5AKA] for the update), and here at least the apps are run on separate Android devices. It is possible to receive the signal using extremely basic antennas, but for best results something with a little gain should be used. The antenna of choice here is a handheld [HB9CV] 2-element beam.

A failed grab from a 2014 transmission, proving that Hackaday scribes don't always get perfect results.
A failed grab from a 2015 transmission, proving that Hackaday scribes don’t always get perfect results.

You can find when the station is due to pass over you from any of a number of ISS tracker sites, and you can keep up to date with ISS SSTV activity on the ARISS news page. Then all you have to do is stand out in the open with your receiver and computing devices running and ready, and point your antenna at the position of the station as it passes over. If you are lucky you’ll hear the tones of the SSTV transmission and a picture will be decoded, if not you may receive a garbled mess. Fortunately grabs of other people’s received pictures are posted online, so you can take a look at what you missed if you don’t quite succeed.

Even if you don’t live within range of a pass, it’s always worth seeing if a Web SDR somewhere is in range. For example this Russian one for the current transmissions.

In that you are using off-the-shelf hardware and software you might complain there is little in the way of an elite hack about pulling in a picture from the ISS. But wait a minute — you just received a picture from an orbiting space station. Do that in front of a kid, and see their interest in technology come alive!

Baofeng Handy Talkie Meets GNU Radio

There was a time when just about every ham had a pricey VHF or UHF transceiver in their vehicle or on their belt. It was great to talk to friends while driving. You could even make phone calls from anywhere thanks to automatic phone patches. In 1980 cell phones were uncommon, so making a call from your car was sure to get attention.

Today, ham radio gear isn’t as pricey thanks to a flood of imports from companies like Baofeng, Jingtong, and Anytone. While a handheld transceiver is more of an impulse buy, you don’t hear as much chat and phone calls, thanks to the widespread adoption of cell phones. Maybe that’s why [Bastian] had bought a cheap Baofeng radio but never used it.

He was working on a traffic light project and wanted to send an RF signal when the light changes. He realized the Baofeng radio was cheap and cheerful solution. He only needed a way to have the PC generate an audio signal to feed the radio. His answer was to design a UDP packet to audio flow graph in GNU Radio. GNU Radio then feeds the Baofeng. The radio’s built-in VOX function handles transmit switching. You can see a video demonstration, below.

Continue reading “Baofeng Handy Talkie Meets GNU Radio”

Repairing Crystal Earpieces

If you make crystal radios, you’ve probably got a few crystal earpieces. The name similarity is a bit coincidental. The crystal in a crystal radio was a rectifier (most often, these days, a germanium diode, which is, a type of crystal). The crystal in a crystal earpiece is a piezoelectric sound transducer.

Back in the 1960s, these were fairly common in cheap transistor radios and hearing aids. Their sound fidelity isn’t very good, but they are very sensitive and have a fairly high impedance, and that’s why they are good for crystal radios.

[Steve1001] had a few of these inexpensive earpieces that either didn’t work or had low sound output. He found the root cause was usually a simple problem and shares how to fix them without much trouble.

Continue reading “Repairing Crystal Earpieces”

Using SDR to Take Control of Your Home Security System

[Dan Englender] was working on implementing a home automation and security system, and while his house was teeming with sensors, they used a proprietary protocol which was not supported by the open source system he was trying to implement. The problem with home automation and security systems is the lack of standardization – or rather, the large number of (often incompatible) standards used to ensure consumers get tied in to one specific system. He has shared the result of his efforts at getting the two to talk to each other via his project decode345.

The result enabled him to receive signals from Honeywell’s 5800 series of wireless products and interface them with OpenHAB — a vendor and technology agnostic open source automation software. OpenHAB offers “bindings” that allow a wide variety of systems and hardware to be integrated. Unfortunately for [Dan], this exhaustive list does not yet include support for the (not very popular) 345MHz protocol used by the Honeywell 5800 system, hence his project. Continue reading “Using SDR to Take Control of Your Home Security System”

Books You Should Read: Making A Transistor Radio

When a Hackaday article proclaims that its subject is a book you should read, you might imagine that we would be talking of a seminal text known only by its authors’ names. Horowitz and Hill, perhaps, or maybe Kernigan and Ritchie. The kind of book from which you learn your craft, and to which you continuously return to as a work of reference. Those books that you don’t sell on at the end of your university career.

Ladybird books covered a huge range of topics.
Ladybird books covered a huge range of topics.

So you might find it a little unexpected then that our subject here is a children’s book. Making A Transistor Radio, by [George Dobbs, G3RJV] is one of the huge series of books published in the UK under the Ladybird imprint that were a staple of British childhoods for a large part of the twentieth century. These slim volumes in a distinctive 7″ by 4.5″ (180 x 115 mm) hard cover format were published on a huge range of subjects, and contained well written and informative text paired with illustrations that often came from the foremost artists of the day. This one was published at the start of the 1970s when Ladybird books were in their heyday, and has the simple objective of taking the reader through the construction of a simple three transistor radio. It’s a book you must read not because it is a seminal work in the vein of Horrowitz and Hill, but because it is the book that will have provided the first introduction to electronics for many people whose path took them from this humble start into taking the subject up as a career. Including me as it happens, I received my copy in about 1979, and never looked back. Continue reading “Books You Should Read: Making A Transistor Radio”

Everyone Should Build At Least One Regenerative Radio Receiver

When we build an electronic project in 2016, the chances are that the active components will be integrated circuits containing an extremely large amount of functionality in a small space. Where once we might have used an op-amp or two, a 555 timer, or a logic gate, it’s ever more common to use a microcontroller or even an IC that though it presents an analog face to the world does all its internal work in the digital domain.

Making A Transistor Radio, 2nd edition cover. Fair use, via Internet Archive.
Making A Transistor Radio, 2nd edition cover. Fair use, via Internet Archive.

There was a time when active components such as tubes or transistors were likely to be significantly expensive, and integrated circuits, if they even existed, were out of the reach of most constructors. In those days people still used electronics to do a lot of the same jobs we do today, but they relied on extremely clever circuitry rather than the brute force of a do-anything super-component. It was not uncommon to see circuits with only a few transistors or tubes that exploited all the capabilities of the devices to deliver something well beyond that which you might expect.

One of the first electronic projects I worked on was just such a circuit. It came courtesy of a children’s book, one of the Ladybird series that will be familiar to British people of a Certain Age: [George Dobbs, G3RJV]’s Making A Transistor Radio. This book built the reader up through a series of steps to a fully-functional 3-transistor Medium Wave (AM) radio with a small loudspeaker.

Two of the transistors formed the project’s audio amplifier, leaving the radio part to just one device. How on earth could a single transistor form the heart of a radio receiver with enough sensitivity and selectivity to be useful, you ask? The answer lies in an extremely clever circuit: the regenerative detector. A small amount of positive feedback is applied to an amplifier that has a tuned circuit in its path, and the effect is to both increase its gain and narrow its bandwidth. It’s still not the highest performance receiver in the world, but it’s astoundingly simple and in the early years of the 20th century it offered a huge improvement over the much simpler tuned radio frequency (TRF) receivers that were the order of the day.

Continue reading “Everyone Should Build At Least One Regenerative Radio Receiver”

A Terahertz Modulator

We’re all used to the changes in the properties of radio frequency systems as the frequency increases and the wavelength becomes shorter. The difference between the way an FM radio and a WiFi adapter behave with respect to their environments, for instance. But these are relatively low frequencies in the scheme of electromagnetic radiation, as you will be aware with ever shorter wavelengths those properties change further until eventually we are not dealing with something we’d describe as radio, but infrared light.

Terahertz waves are the electromagnetic radiation that lies in that area between radio frequencies and infra-red light. You might expect that since science has delivered so many breakthroughs in both radio and IR, we’d have mastered them, but so far very few devices capable of working at these wavelengths have been developed.

A Nature paper from a group at Tufts University holds the promise of harnessing terahertz waves for applications such as data transfer, for they have developed the first terahertz modulator. It takes the form of a section of slot waveguide between two conductors on a substrate, interrupted by what they describe as a two-dimensional electron gas. This is a very thin layer of electron concentration in an InGaAs region of a semiconductor sandwich that can be created or dissipated by electrical stimulus. This creation and removal of the electron layer has the effect of interrupting the flow of terahertz waves in the waveguide, making a functional modulator.

Continue reading “A Terahertz Modulator”