Why IoT will Fail (and How to Save It)

Buzzword technology has two possible fates: they fail and disappear or they succeed and disappear. Remember at one time “multimedia” and “networking” were buzzwords. They succeeded and now they’ve vanished into ubiquity. Of course, there are plenty of failed buzzwords (like telecosm) that you probably don’t even remember. They just vanished into obscurity.

Unless you’ve been living under the CNC mill in your local hackerspace, you’ve probably heard or read about the “Internet of Things” (IoT). Companies big and small have realized that getting in early on The Next Big Thing is good for share prices and, right now, IoT is where everyone is trying to make a play.

There’s two things I’d observe, though: First, IoT is far from new. Connecting embedded systems to the Internet is old hat (I even wrote a book called Embedded Internet Design way back in 2003). Second, the way it is going, IoT–in its current incarnation–is doomed.

Continue reading “Why IoT will Fail (and How to Save It)”

Childhood Tech Exposure Is Slowly Killing The Keyboard

I see the disturbing trend of moving away from keyboards as input devices — and I’m talking about a real, physical keyboard. This isn’t a matter of one decision that kills the keyboard, but an aggregate that is slowly changing the landscape. If you blink, you’ll miss it. We will not find ourselves in a world without keyboards, but in one where most of the available keyboards suck.

Rise of the Virtual Keyboard Generation

Is swipe-style keying the future of coding?
Is swipe-style keying the future of coding?

Tablets are great for screwing around, but when you want to get real work done in a reasonable amount of time, you grab a physical keyboard. In this scenario I don’t see the problem being those in the workforce going away from keyboards; it’s how the younger generations are learning to interact with technology that is troubling. The touchscreen is baby’s first computer. Families gather and the kids are handed their parent’s tablets while the grown-ups watch the game. More and more schools are outfitting classrooms with tablets, and for this I’m an advocate. Getting kids involved early in technology is imperative; knowledge evolves much more rapidly than printed textbooks. The tablet is a powerful tool in both of these areas. But most of the screen time kids get is with touchscreens and no physical keyboard.

How much time are K-12 kids spending in front of a physical keyboard? In the United States, if keyboard (typing) classes exist at all in a public school’s curriculum they’re usually only one-semester. Students who spend half of Elementary school using a tablet, and just one semester at a keyboard, are bound to prefer touchscreen-based entry over a physical keyboard.

Keyboard Erosion

We’ve already seen a strong push into touch-screens on laptops as the tablet market has grown. This is not necessarily a bad thing. Think of the computer mouse, it didn’t replace the keyboard, but augmented it and now is seen as a tool that itself is a necessity.

Continue reading “Childhood Tech Exposure Is Slowly Killing The Keyboard”

Ask Hackaday: Arduino in Consumer Products

Speak with those who consider themselves hardcore engineers and you might hear “Arduinos are for noobs” or some other similar nonsense. These naysayers see the platform as a simplified, overpriced, and over-hyped tool that lets you blink a few LEDs or maybe even read a sensor or two. They might say that Arduino is great for high school projects and EE wannabes tinkering in their garage, but REAL engineering is done with ARM, x86 or PICs. Guess what? There are Arduino compatible boards built around all three of those architectures. Below you can see but three examples in the DUE, Galileo, and Fubarino SD boards.

This attitude towards Arduino exists mainly out of ignorance. So let’s break down a few myths and preconceived biases that might still be lurking amongst some EEs and then talk about Arduino’s ability to move past the makers.

Arduino is NOT the Uno

When some hear “Arduino”, they think of that little blue board that you can plug a 9v battery into and start making stuff. While this is technically true, there’s a lot more to it than that.

  1. An Arduino Uno is just an AVR development board. AVRs are similar to PICs. When someones says “I used a PIC as the main processor”, does that mean they stuck the entire PIC development board into their project? Of course not. It’s the same with Arduino (in most cases), and design is done the same way as with any other microcontroller –
    • Use the development board to make, create and debug.
    • When ready, move the processor to your dedicated board.
  2. What makes an Arduino an “Arduino” and not just an AVR is the bootloader. Thus:
    • An Atmega328P is an AVR processor.
    • An Atmega328P with the Arduino bootloader is an Arduino.
  3. The bootloader allows you to program the AVR with the Arduino IDE. If you remove the bootloader from the AVR, you now have an AVR development board that can be programmed with AVR Studio using your preferred language.

There Is No Special Arduino Language

Arduino "blink" sketch should run on any Arduino compatible board.
Arduino “blink” sketch should run on any Arduino compatible board.

Yes, I know they call them sketches, which is silly. But the fact is it’s just c++. The same c++ you’d use to program your PIC. The bootloader allows the IDE to call functions, making it easy to code and giving Arduino its reputation of being easy to work with. But don’t let the “easy” fool you. They’re real c/c++ functions that get passed to a real c/c++ compiler. In fact, any c/c++ construct will work in the Arduino IDE. With that said – if there is any negative attribute to Arduino, it is the IDE. It’s simple and there is no debugger.

The strength comes in the standardization of the platform. You can adapt the Arduino standard to a board you have made and that adaptation should allow the myriad of libraries for Arduino to work with your new piece of hardware. This is a powerful benefit of the ecosystem. At the same time, this easy of getting things up and running has resulted in a lot of the negative associations discussed previously.

So there you have it. Arduino is no different from any other microcontroller, and is fully capable of being used in consumer products along side PICs, ARMs etc. To say otherwise is foolish.

What is the Virtue of Arduino in Consumer Products?

This is Ask Hackaday so you know there’s a question in the works. What is the virtue of Arduino in consumer products? Most electronics these days have a Device Firmware Upgrade (DFU) mode that allows the end user to upgrade the code, so Arduino doesn’t have a leg up there. One might argue that using Arduino means the code is Open Source and therefore ripe for community improvements but closed-source binaries can still be distributed for the platform. Yet there are many products out there that have managed to unlock the “community multiplier” that comes from releasing the code and inviting improvements.

What do you think the benefits of building consumer goods around Arduino are, what will the future look like, and how will we get there? Leave your thoughts below!

Open Design. It is The Way.

It seems like I’m constantly having the same discussions with different people about the Open Design aspect of The Hackaday Prize. I get arguments from both sides; some attest that there should be no “openness” requirement, and others think we didn’t set the bar nearly high enough. Time to climb onto my soap box and throe down some sense on this argument.

Open Design is Important

When you talk about hardware there is almost always some software that goes into making a finished product work. Making the information about how a product works and how it is manufactured available to everyone is called Open Design; it encompasses both Open Hardware and Open Source Software. Open Design matters!

First of all, sharing how something is designed and built goes much further than just allowing others to build their own. It becomes an educational tool and an innovation accelerator (others don’t need to solve the same problems over and over again). When using a new chip, protocol, or mechanical part you can learn a lot by seeing how someone else already did it. This means faster prototyping, and improvements on the design that weren’t apparent to the original creator. And if it breaks, you have a far easier time trying to diagnose and repair the darn thing! We all benefit from this whether we’re creating something or just using an end product because it will work better, last longer, and has the potential to be less buggy or to have the bugs squashed after the fact.

Nest thermostat rooted by [cj]
There is also peace-of-mind that comes with using Open Design products. The entries in The Hackaday Prize need to be “connected devices”. With open design you can look at the code and see what is being done with your information. Can you say that about Nest? They won’t even allow you to use the thermostat in a country that hasn’t been pre-approved by decree from on high (we saw it hacked to work in Europe a few years back). Now it has been rooted so that you can do with it what you please.

But I contest that it would have been better to have shipped with options like this in the first place. Don’t want to use Nest’s online platform? Fine, let the consumer own the hardware they pay for! My wager since the day they announced Google’s acquisition of Nest is that this will become the “router” for all the connected devices in your home. I don’t want the data from my appliances, entertainment devices, exercise equipment, etc., being harvested, aggregated, and broadcast without having the ability to look at how the data is collected, packaged, and where it is being sent. Open Design would allow for this and still leave plenty of room for the big G’s business model.

I find it ironic that I rant about Google yet it would be pretty hard to deny that I’m a fanboy.

Decentralize the Gatekeeper

I’m going to beat up on Google/Nest a bit more. This is just an easy example since the hardware has the highest profile in the field right now.

If Nest controls the interface and they retain the power to decide whose devices can participate the users lose. Imagine if every WiFi device had to be blessed by a single company before it would be allowed to connect to any access points? I’m not talking about licensing technology or registering a MAC address for a chip. I’m talking about the power, whether abused or not, to shut any item out of the ecosystem based on one entity’s decisions.

If connected devices use a known standard that isn’t property of one corporation it unlocks so many good things. The barrier for new companies to put hardware in the hands of users is very low.

Let’s consider one altruistic part of this; Open Design would make small run and single unit design a possibility. Think about connected devices specialized for the physically challenged; the controller project makes specialized controls for your Xbox, what about the same for your oven, dishwasher, the clock on your wall, or your smart thermostat?

The benefits really show themselves when a “gatekeeper” goes out of business or decides to discontinue the product line. This happened when the Boxee servers were shut down. If the source code and schematics are available, you can alter the code to use a different service, build up your own procotol-compliant home server, or even manufacture new devices that work with the system for years to come. There are already pleas for belly-up manufacturers to open-source as the last death throw. Hacking this stuff back into existence is fun, but isn’t it ridiculous that you have to go to those lengths to make sure equipment you purchased isn’t turned into a doorstop when they shut the company lights off?

home-automation-from-1985To drive the point home, consider this Home Automation System from 1985 [via Reddit]. It’s awesome, outdated, and totally impossible to maintain into the future. I’m not saying we should keep 30-year-old hardware in use indefinitely. But your choices with this are to source equally old components when it breaks, or trash everything for a new system. Open Design could allow you to develop new interfaces to replace the most used parts of the system while still allowing the rest of the hardware to remain.

Why not disqualify entries that aren’t Open Hardware and Open Source Software?

Openness isn’t a digital value

Judging preferences are much better than disqualifying requirements. This is because ‘openness’ isn’t really a digital value. If you publish your schematic but not your board artwork is that open? What if you’re using parts from a manufacturer that requires a Non-Disclosure Agreement to view the datasheet and other pertinent info about the hardware?

In addition to deciding exactly where the threshold of Open or Not-Open lies, we want to encourage hackers and companies to try Open Design if they never have before. I believe that 1% open is better than 0% open, and I believe that there is a “try it, you’ll like it” experience with openness. If this is the case, The Hackaday Prize can help pollinate the virtue of Open Hardware far and wide. But only if we act inclusively and let people work their way toward open at their own pace.

There are more benefits to Open than there are drawbacks.

open-hardware-is-goodThe biggest worry I hear about open sourcing a product is that it’ll get picked up, manufactured, and sold at a cut-throat rate.

If you build something worth using this is going to happen either way. The goal should be to make a connection with your target users and to act ethically. Open Design allows the user to see how your product works, and to add their own features to it. Most of the time these features will appeal to a very small subset of users, but once in a while the community will develop an awesome addition to your original idea. You can always work out a way to include that in the next revision. That right there is community; the true power of open.

So yeah, we’re giving away a trip to space and hundreds of other prizes. But these are really just a carrot to entice hackers, designers, and engineers to feed the hungry world of Open Hardware and Open Source Software.


Net Neutrality: FCC Hack is a Speed Bump on the Internet Fast Lane

Net neutrality is one of those topics we’ve been hearing more and more about in recent years. The basic idea of net neutrality is that all Internet traffic should be treated equally no matter what. It shouldn’t matter if it’s email, web sites, or streaming video. It shouldn’t matter if the traffic is coming from Wikipedia, Netflix, Youtube, etc. It shouldn’t matter which Internet Service Provider you choose. This is the way the Internet has worked since it’s inception. Of course, not everyone agrees that this is how things should stay. We didn’t always have the technology to filter and classify traffic. Now that it’s here, some believe that we should be able to classify internet traffic and treat it differently based on that classification.

It seems like much of the tech savvy community argues that net neutrality is a “given right” of the Internet. They believe that it’s the way the Internet has always been, and always should be. The other side of the argument is generally lobbied by Internet service providers. They argue that ISP’s have the right to classify Internet traffic that flows through their equipment and treat it differently if they so choose. As for everyone else, just about everyone these days relies on the Internet for business, banking, and entertainment but many of those people have no idea how the Internet works, nor do they really care. It’s like the electricity in their home or the engine in their car. As long as it’s working properly that’s all that matters to them. If they can check Facebook on their phone while watching Breaking Bad on Netflix in full HD, why should they care how that stuff gets prioritized? It work’s doesn’t it? Continue reading “Net Neutrality: FCC Hack is a Speed Bump on the Internet Fast Lane”

Heroes of Hardware Revolution: Bob Widlar

Bob Widlar (1937-1991) is without a doubt one of the most famous hardware engineers of all time.  In fact, it would not be an exaggeration to say that he is the person who single-handedly started the whole Analog IC Industry. Sure, it’s Robert Noyce and Jack Kilby who invented the concept of Integrated Circuits, but it’s Widlar’s genius and pragmatism that brought it to life. Though he was not first to realize the limitations of planar process and designing ICs like discrete circuits, he was the first one to provide an actual solution – µA702, the first linear IC Operational Amplifier. Combining his engineering genius, understanding of economic aspects of circuit design and awareness of medium and process limitations, he and Dave Talbert ruled the world of Analog ICs throughout the 60s and 70s. For a significant period of time, they were responsible more than 80 percent of all linear circuits made and sold in the entire world.

Bob Widlar


Continue reading “Heroes of Hardware Revolution: Bob Widlar”

Fluke Issues Statement Regarding Sparkfun’s Impounded Multimeters


Fluke just issued a response to the impounding of multimeters headed for market in the United States. Yesterday SparkFun posted their story about US Customs officials seizing a shipment of 2000 multimeters because of trademark issues. The gist of the response is that this situation sucks and they want to do what they can to lessen the pain for those involved. Fluke is providing SparkFun with a shipment of genuine Fluke DMMs which they can sell to recoup their losses, or to donate. Of course SparkFun is planning to donate the meters to the maker community.

Anyone with a clue will have already noticed the problem with this solution. The impounded shipment of 2k meters will still be destroyed… eh. The waste is visceral. But good for Fluke for trying to do something positive.

Before we sign off let’s touch on the trademark issue for just a moment. We can’t really blame Fluke too much for this. The legal crux of the matter is you either defend your trademark in every case, or you don’t defend it at all. In this case it was the border agents defending the filing, but for ease of understanding we’ll not go into that. On the other hand, speaking in general business terms, the way things are set up it is advantageous to acquire a trademark specification that is as broad as possible because it helps to discourage competitors from coming to market. So trademark is good when it keep hucksters from trying to rip off consumers. But it is bad if applied too broadly as a way of defending a company’s market share.

Where does Fluke come down in all of this? Who knows. There is literally no right answer and that’s why the discussion around yesterday’s post was full of emphatic arguments. A Fluke meter is a cream-of-the-crop device and they have the right (and obligation) to ensure that reputation is not sullied. SparkFun serves a market that probably can’t afford a Fluke at this time but may some day in the future. And this is the reason we can feel okay about this outcome.

[via Twitter]