Convert a Rotary Phone to VOIP using Raspberry Pi

There’s something so nostalgic about the rotary phone that makes it a fun thing to hack and modernize. [Voidon] put his skills to the test and converted one to VoIP using a Raspberry Pi. He used the RasPi’s GPIO pins to read pulses from the rotary dial – a functional dial is always a welcome feature in rotary phone hacks. An old USB sound card was perfect for the microphone and handset audio.

As with any build, there were unexpected size issues that needed to be worked around. While the RasPi fit inside the case well, there was no room for the USB power jack or an ethernet cable, let alone a USB power bank for portability. The power bank idea was scrapped. [voidon] soldered the power cord to the RasPi before the polyfuse to preserve the surge protection, used a mini-USB wifi dongle, and soldered a new USB connector to the sound card. [Voidon] also couldn’t get the phone’s original ringer to work, so he used the Raspberry Pi’s internal sound card to play ringtones.

The VoIP (SIP) was managed by some Python scripting, available at GitHub. [voidon] has some experience in using Asterisk at his day job, so it will be interesting to see if he incorporates it in the future.

[via Reddit]

 

 

Reach Out and Touch Someone with WiFi Photo Booth

[kitesurfer1404] put together a nice looking vintage photobooth with WiFi capability. He’s using an arduino to monitor the state of the buttons, LED lighting control, seven segment display AND the DSLR camera. He then uses a Raspberry Pi to control imagine processing and to provide scaling and other effects, which can take up to 20 seconds per image. The Pi runs in WiFi Access Point mode, so anyone with a WiFi capable device can connect to the photo booth and view the images.

We’ve seen some interesting twists on photo booths before. But [kitesurfer1404’s] vintage style makes his stand out all on its own. He designed the graphics with Inkscape and printed them on thick paper. He then soaked the graphics in tea for several hours and dried then for several more days to get that nice rustic look.

Be sure to check out [kitesurfer1404’s] site for full details and an assortment of high resolution images of his project.

Using Cheap Displays With The Raspberry Pi

The Raspberry Pi B+ has a native VGA connection. Sure, it’s hidden away in binary blobs and device trees, and you need to wire up the GPIO pins just right, but it’s possible to connect a VGA monitor to a Raspi B+ natively. For the brave, smart, or foolish, this means you can also drive raw DPI displays. [Robert] had a few of these dirt cheap displays sitting around and decided to give the entire thing a go. It worked, and he’s written down how to do it.

One of the chip architects for the Raspberry Pi, [Gert van Loo], was exceedingly clever when designing the Pi. There’s a parallel interface in the chip that, when combined with a few dozen resistors, can drive a VGA display in addition to the HDMI display. Screens with a Display Parallel Interface are actually pretty similar to what the VGA spec calls for. The problem is, hardly any of this is documented for the Raspberry Pi, and finding it means trawling through forums.

[Robert]’s example circuit uses a 5″ display from Adafruit, a 40-pin breakout, and a bunch of prototyping wires. Setup requires grabbing a cut down version of the device tree used for the Raspi VGA breakout board, setting the output format, rgb order, and aspect ratio of the display, and wiring everything up.

What’s interesting here is that [Robert] reproduced this project from scratch, and found that any display with a 40-pin DPI connector will work with the Raspi, provided you have a datasheet. That’s pretty cool; these displays can be cheap, and since we don’t yet have a proper DSI display for the Pi, this will have to do for now.

Video below of [Robert]’s inspiration for this build, [Ladyada].

Continue reading “Using Cheap Displays With The Raspberry Pi”

EVA: What’s on Telly for the Visually Impaired

[chewabledrapery] has certainly used his Raspberry Pi for good. His girlfriend’s grandfather is growing more visually impaired as time goes on. He likes to watch telly, but has trouble reading the on-screen information about the channel and programming. To that end, [chewabledrapery] has built an electronic voice assistant called EVA, who fetches the telly schedule from a web service and reads it aloud in her lovely voice that comes courtesy of Google Translate’s TTS function.

Under EVA’s hood is a Raspberry Pi. A USB hub powers the Pi and holds a small USB soundcard, a Wi-Fi dongle, and a USB daughterboard that the controller plugs into. The daughterboard is from a USB keyboard, which makes another appearance in the awesome controller. It’s made of a joystick and two arcade buttons that use the USB keyboard’s controller to interact with Python scripts.

[chewabledrapery]’s scripts make formatted requests to a web service called atlas, which returns JSON objects with the TV schedule and content descriptions. EVA then turns to Google Translate, speaking the formatted text through a small amplifier and salvaged PC speaker. In order to minimize the number of web calls, some of EVA’s frequent musings are stored locally. A full tour of EVA is after the break.

We love to see hacks that help people. Remember this RFID audio book reader?

Continue reading “EVA: What’s on Telly for the Visually Impaired”

RetroPie Turned Game Gear

Running vintage console emulators on a Raspberry Pi seems to be the thing all the cool kids are doing. The coolest RetroPie builds take a vintage console – usually of the Nintendo genus – stuff a Raspi in there somehow, and Bob’s your uncle. [Phil Herlihy] over at Adafruit is throwing his hat into the ring with a similar build. For this one, though, he’s using Sega’s oft-maligned Game Gear. He might actually get more than a few hours out of the battery with this one, and the battery is rechargeable, too. You can’t beat that.

The build begins with tearing down an old Game Gear, chopping up the PCB to save the button contact, and starting to fit all the components in there. The display is completely replaced with a 3.5″ composite display, a bit larger than the 3.2″ display found in a stock Game Gear. That’s not a problem, there’s a surprising amount of space behind the bezel, and if you’re good enough with an xacto blade and a file, it will look stock.

The rest of the components include an amplifier board, battery charge regulator, a 2500mAh LiPo, and a Teensy to read the buttons. There are a few modifications required for the Pi, but the finished device presents a USB port to the outside world; keep a keyboard by your side, and this is a portable Pi in every respect.

An Upgrade To A Raspberry Pi Media Server

For the last few years, [Luke] has been running a music server with a Raspberry Pi. With the new Raspberry Pi 2 and its quad core processor, he thought it was time for an upgrade.

The build consists of a Raspi 2, a HiFiBerry Dac to address the complaints of terrible audio on the Pi, an aluminum enclosure, and some electronics for IO and a real software shutdown for the Pi. The Arduino also handles an IR remote and a rotary encoder on the front of the enclosure.

The software is the Logitech Media Server along with Squeezeslave. The front end is custom, though, with functions for shutdown and receiving IR remote codes. Everything is served up by Flask, with a 32GB microSD card stuffed into the Pi to store MP3s. All in all, a great build.

Raspberry Pi GSM Hat

The Spark Electron was released a few days ago, giving anyone with the Arduino IDE the ability to send data out over a GSM network. Of course, the Electron is just a GSM module tied to a microcontroller, and you can do the same thing with a Pi, some components, and a bit of wire.

The build is fairly basic – just an Adafruit Fona, a 2000 mah LiPo battery, a charge controller, and a fancy Hackaday Perma-Proto Hat, although a piece of perf board would work just as well in the case of the perma-proto board. Connections were as simple as power, ground, TX and RX. With a few libraries, you can access a Pi over the Internet anywhere that has cell service, or send data from the Pi without a WiFi connection.

If you decide to replicate this project, be aware you have an option of soldering the Fona module right side up or upside down. The former gives you pretty blinking LEDs, while the latter allows you to access the SIM. Tough choices, indeed.