Omnidirectional Robot Takes on a Candy Factory


[AltaPowderDog] is building a competition robot as part of his freshman engineering course at Ohio State University. The contest is sponsored by Nestle, so it’s no surprise the robots have to perform various tasks in a miniature candy factory. Broken up into teams of four, the students are building autonomous robots to move pallets, scoop candy, operate switches and pull pins from tubes. Each team is provided a standard microcontroller board and funds to purchase robot parts from an online store. The factory also sports an overhead infrared navigation system, which should help the robots stay on track.

[AltaPowderDog] took his inspiration from [Michal's] OmniBot, which used adjustable geometry wheels. A lever and gear system allows the robot to pivot all four wheels synchronously. This effectively allows the robot to turn within its own axis. With some proper path planning and end effector placement, [AltaPowderDog's] team should be able to shave down their time through the candy factory. The team has run into a few issues though. This robot design only utilizes two powered wheels, which has caused the team to become stuck up on a ramp in the factory. To combat this, the team is installed a simple suspension which allows the non-powered wheels to move up and out of the way on the ramp. The results look promising. The video after the break includes a short clip of [AltaPowderDog's] ‘bot making a quick turn and activating a switch. Very nice work!

[Read more...]

Retrotechtacular: Restoring A 19th Century Automaton


Made sometime in the 1790s or 1800s London, the Maillardet Automaton has a long and storied history. It was exhibited around England for several decades, brought over the Atlantic by [P.T. Barnum], nearly destroyed in a fire, and donated to the Franklin Institute in Philadelphia in the 1920s. From there, this amazingly complex amalgam of cogs, cams, and linkages eventually became the inspiration for the book – and movie - Hugo. Time hasn’t exactly been kind to this marvel of the clockmaker’s art; it has been repaired four times before receiving a complete overhaul in 2007 by [Andrew Baron].

[Fran], one of Hackaday’s sources for awesome projects, recently visited the Franklin Institute and posted a series of videos on the reverse engineering of the Maillardet Automaton. Being nearly destroyed and repaired so many times didn’t make this an easy job; it’s extremely possible no one alive has ever seen the eyes of the Automaton move as originally designed.

Even though the Maillardet Automaton has one of the largest series of cams of any mechanical draftsman, that doesn’t mean it’s simply an enlargement of an earlier machine. The automaton’s pen is like no other writing device on Earth, with a stylus acting as a valve to dispense ink whenever the tip touches paper. The eyes have linkages to follow the pen as it traces a drawing. In 1800, this automaton would have been a singularity in the uncanny valley, and watching it put pen to paper is still a little creepy today.

Below you’ll find a video from [Fran] demonstrating all seven drawings the Maillardet Automaton can reproduce. You can also find a whole bunch of pics of the mechanisms along with the 2007 repair report on [Andrew Baron]‘s site.

Retrotechtacular is a weekly column featuring hacks, technology, and kitsch from ages of yore. Help keep it fresh by sending in your ideas for future installments.

[Read more...]

Robot Controller More Fun Than an Actual Wii-U


Okay, that’s probably not fair since we never gave the Wii-U a try at all. But doesn’t this seem like a much better idea for controlling a robot than playing a gaming console?

The photo above is a bit deceiving because the unit actually has quite a bit of depth. Despite that, the cleanliness of the build is very impressive. [Alec Waters] started off with a backup monitor meant for automotive use (we’d estimate 7″). There’s a radio receiver, two analog joysticks where your thumbs line up when holding the controller, and an Arduino to pull it all together. If you haven’t figured it out already, this displays the wireless video from the robot he’s controlling. He’s also include an auxiliary port which lets you bypass the radio receiver and plug in a video feed directly.

Still convinced you need Nintendo’s consumer controller with a built-in screen. Yes, that can be hacked to work with all your projects. But seriously, this is way more fun.

Controlling Motors Without A Microcontroller


Think you need a microcontroller or a proper motor driver to control a motor? Not really. Because RS-232 serial ports are a hack in and of themselves, you can control two motors with only a serial port and a bridge driver.

Instead of using the data pins on the serial port, this circuit works on with the DTR and RTS control signals of an RS-232 interface. Unlike the data lines of a serial port, these control signals are high when they’re enabled and can also provide a small amount of current – enough to control a pair of pins on a TA7291P bridge driver.

The rest of the circuit consists of a few resistors and a pair of motors, and the software simply turns the DTR and RTS lines on and off. It’s enough for a small robot to waddle across a table, and given the correct driver is simple enough to mash together out of parts from a junk drawer.

Router Robot a Promising Playground for Young Hacker


[Stephen Downward] has put together a very impressive Internet controlled robot. There are so many things about his video presentation (also embedded below) which we find delightful. Notably, it’s obvious that he knows what he’s talking about when discussing everything from the electronics chosen for the project, the mechanical assembly and the issues with its current state, as well as the software backend that gives him control of the rover.

The bulk of the rover is the Linksys WRT-54G router which he picked up at a thrift shop. This has been a popular model for building rovers for quite some time. [Stephen] is not driving directly from the router’s serial port, but that could be an adventure for him down the road. For now he’s using an Arduino Mega along with an Ethernet shield to connect the motors to his network. The IP camera on the front gives him the video feed to operate this completely over the Internet using his own program written in C#. He mentions that the CD wheels he has aren’t ideal because of their thin tread area (covered in masking tape) and the inaccurate mounting which leaves one of them at an angle. He’s hoping to design and print his own. He plans rent some time on a 3D printer at the local University when their 3D printing service comes back online.

We think the hardest part with robot building is getting your first platform up and running. Now that he’s got that it’s a matter of making improvements and add-ons. Since he’s got the I/O of the Mega at his disposal we’d like to see him implement a bunch of different sensor: line following, bump sensors, distance sensor, heck… maybe someday he’ll scavenge some Lidar for it!

[Read more...]

Nimble Dodgebot is Super Skittish


For one of [Aron's] recent robotics modules at college he was tasked with building a small robot. He decided to make project Dodgebot, a cute and extremely quick robot that won’t run into things!

The body is made of perforated steel and supports the motor boxes with wheels (stolen from a toy perhaps?), two IR sensors, and the tidy protoboard on top to contain the electronics — seriously check out the wiring on it!

To control it he’s using an 18-pin dsPIC30F3012 and a SN754410NE driver. The robot works by detecting different states based on the distance measurements from each sensor, and then varying the output to each motor. It’s extremely quick and quite fun to watch as it seems to dodge everything in its path! See for yourself, after the break. 

[Read more...]

RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team


Every once in a while we get a tip for a project that really, really, really blows our minds. This is one of them.

It looks like a basic catamaran with a few extra bells and whistles — except it is so much more than that. You’re looking at a fully Autonomous Surface Vehicle, complete with a piggybacking 6-rotor UAV. It’s decked out in cameras, sonar sensors, laser rangefinders, high accuracy GPS-RTK tracking, an IMU, oh, and did we mention the autonomous 6-rotor UAV capable of taking off and landing on it?

It all started out as a simple experiment within ECHORD (the European Clearing House for Open Robotics Development), and since then it has become a fully funded project at UNINOVA, a Centre of Technology and Systems in Portugal.

The purpose of the mind-blowing robot team is to collect data of river environments — think of it as Google Maps 2.0 — which is almost an understatement for what it is capable of.

You seriously have to watch the video after the break.

[Read more...]