Alexa Robot Coffee Maker Brews Coffee, Speaks For Itself

To keep hackers fueled and hacking, why not hack a coffee maker into a coffee brewing robot? [Carter Hurd] and [David Frank] did just that at The Ohio State’s Hack OHI/O 24 hour Hackathon. They even won the “Best Hardware Hack”. The video below shows it in action but the guys sent us some extra details on how it’s made.

To give it a voice they put Alexa on a Raspberry Pi. Using an audio splitter they have the voice go both to a speaker and to an Arduino. The Arduino then uses the amplitude of the audio signal’s positive values to determine how much to open the “mouth”, the coffee maker’s hinged cover. As is usually the case, there’s some lag, but the result is still quite good.

The brewing is also controlled by the Arduino. They plan to add voice control so that they can simply ask, “Alexa, make me coffee”, but for now they added a switch on the side to start the brewing. That switch tells the Arduino to work one servo to open the cover, another to insert a coffee filter, and two more to scoop up some coffee from a container and dump it into the filter.

They replaced the coffee maker’s on/off switch with a relay so that after the Arduino closes the cover again, it uses the relay to start the brewing. The result is surprisingly human-like. We especially like the graceful movement achieved by the two servos for scooping up and dumping the coffee. Full disclosure: they did admit that it would often either not scoop enough coffee or scoop enough but spill a bunch on the group.

Continue reading “Alexa Robot Coffee Maker Brews Coffee, Speaks For Itself”

From IKEA Lamp To Robot Arm

We’re used to projects that take everyday household objects and modify or enhance them into new and exciting forms that their original designers never intended. A particular theme in this endeavour comes from the IKEA hacking community, who take the products of the Swedish furniture store and use them for the basis of their work.

A particularly inventive piece of IKEA hacking is a project from [], a low-cost 3D-printed robot arm based on Ikea Tertial lamp. The lamp in question is a relatively inexpensive spring-balanced desk lamp that when looked at in another light has all the metalwork ready-cut for a 5 degrees of freedom robot arm when combined with 3D-printed servo holders for five servos at its joints. The resulting design has all files available on Thingiverse, and judging by the video we’ve posted below the break makes for a rather effective arm.

Continue reading “From IKEA Lamp To Robot Arm”

Pick-And-Place Machine for Candy

Every December and May the senior design projects from engineering schools start to roll in. Since the students aren’t yet encumbered with real-world detractors (like management) the projects are often exceptional, unique, and solve problems we never even thought we had. Such is the case with [Mark] and [Peter]’s senior design project: a pick and place machine that promises to solve all of life’s problems.

Of course we’ve seen pick-and-place machines before, but this one is different. Rather than identifying resistors and capacitors to set on a PCB, this machine is able to identify and sort candies. The robot — a version of the MeARM — has three degrees of freedom and a computer vision system to alert the arm as to what it’s picking up and where it should place it. A Raspberry Pi handles the computer vision and feeds data to a PIC32 which interfaces with the hardware.

One of the requirements for the senior design class was to keep the budget under $100, which they were able to accomplish using pre-built solutions wherever possible. Robot arms with dependable precision can’t even come close to that price restraint. But this project overcomes the lack of precision in the MeArm by using incremental correcting steps to reach proper alignment. This is covered in the video demo below.

Senior design classes are a great way to teach students how to integrate all of their knowledge into a final class, and the professors often include limits they might find in the real world (like the budget limit in this project). The requirement to thoroughly document the build process is also a lesson that more people could stand to learn. Senior design classes have attempted to solve a lot of life’s other problems, too; from autonomous vehicles to bartenders, there’s been a solution for almost every problem.

Continue reading “Pick-And-Place Machine for Candy”

Softer Side of Robots is Future of Space

What will next generation space suits look like? Kari Love is making the case that new space suits will exhibit the best in soft robot technology. The problem is that most people don’t really understand much about soft robots, or about space for that matter. Her talk at the Hackaday SuperConference explores the research she has been doing into future generations of space suits. Check out the video below and then join us after the break for more on this topic.

Continue reading “Softer Side of Robots is Future of Space”

“What is My Purpose?” You Amplify and Display Signals.

[Andy_Fuentes22] likes to stream music, but is (understandably) underwhelmed by the sound that comes out of his phone. He wanted to build something that not only looks good, but sounds good. Something that could stream music through a Chromecast or a Raspi, but also take auxiliary input. Something awesome, like the Junkbots Sound System.

The ‘bots, named LR-E (Larry) and R8-CHL (Rachel), aren’t just cool pieces of art. They’re both dead-bug-walking bots with an LM386-based amplifier circuit and an AN6884-based VU meter in their transparent, industrial relay bodies. LR-E is the left channel, and his lovely wife is the right channel. The best part is that they are wired into the circuit through their 3.5mm plug legs and the corresponding jacks mounted in the Altoids tin base.

[Andy] built this labor of love from the ground up. He started with some very nice design sketches and took a bazillion pictures along the way. We think it sounds pretty good, but you can judge for yourself after the break. If VU meters are your jam, here’s another that’s built into the speaker.

Continue reading ““What is My Purpose?” You Amplify and Display Signals.”

[Fran Blanche] Goes In-Depth with the Maillardet Automaton

We’re not specialists, but the Maillardet Automaton is one of the more amazing mechanical machines that we’ve seen in a while, and [Fran Blanche] got to spend some time with it in an attempt to figure out how it’s mysterious missing pen apparatus would have worked. The resulting video, embedded below, is partially her narrative about the experiment she’s running, and part straight-up mechanical marvel.

If you need a refresher course on Maillardet’s Automaton, we’ll send you first to Wikipedia, and then off to watch this other video , which has a few great close-ups of the cams that drive everything.

Continue reading “[Fran Blanche] Goes In-Depth with the Maillardet Automaton”

Use Machine Learning To Identify Superheroes and Other Miscellany

[Massimiliano Patacchiola] writes this handy guide on using a histogram intersection algorithm to identify different objects. In this case, lego superheroes. All you need to follow along are eyes, Python, a computer, and a bit of machine learning magic.

He gives a good introduction to the idea. You take a histogram of the colors in a properly cropped and filtered photo of the object you want to identify. You then feed that into a neural network and train it to identify the different superheroes by color. When you feed it a new image later, it will compare the new image’s histogram to its model and output confidences as to which set it belongs.

This is a useful thing to know. While a lot of vision algorithms try to make geometric assertions about the things they see, adding color to the mix can certainly help your friendly robot project recognize friend from foe.