Off-Grid Travel — Setting Up a Solar System

When you’re living out of a vehicle, or even just traveling out of one, power quickly becomes a big concern. You need it for lights, to charge your various devices, to run your coffee maker and other appliances, and possibly even to store your food if you’ve got an electric refrigerator. You could do what many RV owners do: rely on campgrounds with electrical hookups plus a couple of car batteries to get you from one campground to the next. But, those campgrounds are pricey and often amount to glorified parking lots. Wouldn’t it be better if you had the freedom to camp anywhere, without having to worry about finding somewhere to plug in?

That’s exactly what we’re going to be covering in this article: off-grid power on the road. There are two major methods for doing this: with a portable gas generator, or with solar. Gas generators have long been the preferred method, as they provide a large amount of power reliably. However, they’re also fairly expensive, cumbersome, noisy, and obviously require that you bring along fuel. Luckily, major advances in solar technology over the past decade have made it very practical to use solar energy as your sole source of electricity on the road.

Continue reading “Off-Grid Travel — Setting Up a Solar System”

Easy Parabolic Mirror from a Trash Can Lid

Parabolic reflectors for solar applications are nice stuff, and making your own is a great project in itself. One of the easiest ways we have seen is that of [GREENPOWERSCIENCE], who uses nothing more than a trash can lid, mylar film, and tape. You need a way to make a partial vacuum though.

The idea is so simple that it´s almost like cheating. Cut a circle of mylar slightly larger than the lid, and tape it all around, taking care of stretching the mylar in the process. After you´re done with this, you end up with a nice flat mirror. Here´s where the vacuum is needed to force the film into parabolic shape. Extract the air from a little hole in the lid that was previously drilled, and tape it to prevent the loss of the vacuum. The atmospheric pressure on the mylar film will take care of the job, and magically you get a nearly-parabolic reflector ready for work.

In this other video, you can see the reflector in action burning stuff. One obvious problem with this technique is the loss of the vacuum after some time, about an hour according to the author. Here´s another way to make a more durable mirror also with mylar as the reflecting element, however the quality of the resulting mirror is not as good.


How To Hack A Spacecraft To Die Gracefully

Last week, the Rosetta spacecraft crashed into comet 67P/Churyumov-Gerasimenko after orbiting it since 2014. It was supposed to do that: the mission was at an end, and the mission designers wanted to end it by getting a close look at the surface of the comet. But this raises an interesting problem: how do you get a device that is designed to never stop to actually stop?
Continue reading “How To Hack A Spacecraft To Die Gracefully”

Homebrew Powerwall Sitting at 20kWh

Every now and then a hacker gets started on a project and forgets to stop. That’s the impression we get from [HBPowerwall]’s channel anyway. He’s working on adding a huge number of 18650 Lithium cells to his home’s power grid and posting about his adventures along the way. This week he gave us a look at the balancing process he uses to get all of these cells to work well together. Last month he gave a great overview of the installed system.

His channel starts off innocently enough. It’s all riding small motor bikes around and having a regular good time.  Then he experiments a bit with the light stuff, like a few solar panels on the roof.  However, it seems like one day he was watching a news brief about the Powerwall (Tesla’s whole-home battery storage system) and was like, “hey, I can do that.”

After some initial work with the new substance it wasn’t long before he was begging, borrowing, and haggling for every used 18650 lithium battery cell the local universe in Brisbane, Australia could sell him. There are a ton of videos documenting his madness, but he’s all the way up to a partly off-grid house with a 20kWh battery bank, for which he has expansion plans.

There’s a lot of marketing flim flam and general technical pitfalls in the process of generating your own non-grid electricity. But for hackers in sunny areas who want to dump those rays into local storage this is an interesting blueprint to start with.

Continue reading “Homebrew Powerwall Sitting at 20kWh”

Characterizing a Death Ray… er, Solar Oven

Many of you will probably at some point have looked at a satellite dish antenna and idly wondered whether it would collect useful amounts of heat if you silvered it and pointed it at the sun. Perhaps you imagine a handy source of  solar-cooked hotdogs, or maybe you’re a bit of a pyromaniac.

[Charlie Soeder] didn’t just think about it, he did it. Finding a discarded offset-focus DirecTV dish, he glued a grid of 230 inch-square mirror tiles to it and set to investigating  the concentrated solar energy at its focus. 

Cotton waste, newspaper, and scraps of fabric char and burn with ease. A cigarette is lit almost from end to end, and it burns a hole right through a piece of bamboo. Most of the energy is in the form of light, so transparent or reflective items need a little help to absorb it from something dark. He demonstrated this by caramelizing some sugar through adding a few bits of charcoal to it, once the charcoal becomes hot enough to caramelize the sugar around it the spreading dark colour causes the rest of the sugar to caramelize without further help.

Solar furnace calculations
Solar furnace calculations

To gain some idea of the power of his solar furnace, he recorded a time series of temperature readings as it heated up some water darkened with a bit of charcoal to absorb heat. The resulting graph had a flat spot as a cloud had passed over the sun, but from it he was able to calculate instantaneous power figures from just below 30W to just below 50W depending on the sun.

He records his progress in the video you’ll find below the break. Will we be the only ones casting around for a surplus dish after watching it?

Continue reading “Characterizing a Death Ray… er, Solar Oven”

Working in Peace With an Off-Grid Office Shed

Finding a good work space at home isn’t a trivial task, especially when you’ve got a wife and kid. A lot of us use a spare bedroom, basement, or garage as a space to work on our hobbies (or jobs). But, the lack of true separation from the home can make getting real work done difficult. For many of us, we need to have the mental distance between our living space and our working space in order to actually get stuff done.

This is the problem [Syonyk] had — he needed a quiet place to work that was separated from the rest of his house. To accomplish this, he used a Tuff Shed and set it up to run off-grid. The reason for going off-grid wasn’t purely environmental, it was actually more practical than trying to run power lines from the house. Because of the geology where he lives, burying power lines wasn’t financially feasible.

Continue reading “Working in Peace With an Off-Grid Office Shed”

Star Track: A Lesson in Positional Astronomy With Lasers

[gocivici] threatened us with a tutorial on positional astronomy when we started reading his tutorial on a Arduino Powered Star Pointer and he delivered. We’d pick him to help us take the One Ring to Mordor; we’d never get lost and his threat-delivery-rate makes him less likely to pull a Boromir.

As we mentioned he starts off with a really succinct and well written tutorial on celestial coordinates that antiquity would have killed to have. If we were writing a bit of code to do our own positional astronomy system, this is the tab we’d have open. Incidentally, that’s exactly what he encourages those who have followed the tutorial to do.

The star pointer itself is a high powered green laser pointer (battery powered), 3D printed parts, and an amalgam of fourteen dollars of Chinese tech cruft. The project uses two Arduino clones to process serial commands and manage two 28byj-48 stepper motors. The 2nd Arduino clone was purely to supplement the digital pins of the first; we paused a bit at that, but then we realized that import arduinos have gotten so cheap they probably are more affordable than an I2C breakout board or stepper driver these days. The body was designed with a mixture of Tinkercad and something we’d not heard of, OpenJsCAD.

Once it’s all assembled and tested the only thing left to do is go outside with your contraption. After making sure that you’ve followed all the local regulations for not pointing lasers at airplanes, point the laser at the north star. After that you can plug in any star coordinate and the laser will swing towards it and track its location in the sky. Pretty cool.

Continue reading “Star Track: A Lesson in Positional Astronomy With Lasers”