Tymkrs’ Deconstruction for the zombie apocalypse

tmker

We’ve seen a few of the projects from The Deconstruction, a 48-hour build-a-thon for hackerspaces and other groups around the globe. Of course Tymkrs, a pair of geeky vloggers famous for their building prowess, were part of The Deconstruction, and in the process they came up with a few really cool builds at their hackerspace, The Rabbit Hole, in Rochester, MN.

Their theme for The Deconstruction was “a zombie apocalypse”. Instead of homemade crossbows and electric fences, Tymkrs and the rest of The Rabbit Hole put a ‘rebuilding society’ spin on the whole zombie apocalypse and ended up building things that would be useful after Z-day.

First up is a PVC bike trailer designed to easily attach to the back of a bicycle. The frame is made out of a few pieces of 2″ PVC pipe with some nylon rope knotted together for a nice webbed platform. a 5/8″ steel rod was turned down to accept two 20″ bike wheels. A useful build, even if it’s not the zombie apocalypse.

The second build is a solar japanese lantern, combining [Addie]‘s love of solar lanterns and japanese-style lanterns into one great project. The materials for this build came from a broken solar-powered lantern with completely revamped electronics. There’s a Joule thief to keep the LED lit, and a few solar panels to charge up the batteries during the day. Of course the build wasn’t complete without a little decoration, so [Addie] drew four panels of rabbits for The Rabbit Hole team.

By far the most dangerous build undertaken by The Rabbit Hole is their can crusher. It’s a pair of snowblower tires powered by a disused garage door opener. The theory of operations is that a can will drop in between the rotating wheels, crushing the can, and sending it to a waste basket below the device. In practice, the device didn’t really live up to expectations, but it’s loud and dangerous, so we’ll give it a pass.

A remote-controlled, autonomous kite generates power

kite

Generating power from wind is easy – just stick a windmill on a pole and attach a generator. That’s not particularly cool, though, so [Adrien] and his team from his senior design project are using an autonomously controlled kite to generate power

The basic idea of generating electricity from a kite is to fly it around in figure-eights while unwinding the kite line from a spool. The very strong forces on the kite lines can be used to drive a generator which provides power for reeling the kite back in at a lower angle of attack. You can check out [Adrien]‘s kite power theory page for a few more details on how this works.

Right now, [Adrien] and his team have a basic rig set up to generate power and are flying the kite via a joystick. Updates are coming, and you can check out the video of their RC kite in action after the break.

[Read more...]

A table saw to cut solar panels

saw

Steampunker extraordinaire [Jake von Slatt] loves the idea of solar-powered garden lights soaking up the sun’s rays during the day and powering a LED in the evening. Commercially available solar lanterns, as [Jake], you, me, and everyone else on the planet have discovered, are universally terrible and either don’t have solar panels large enough to charge a battery, or only last a year or so. [Jake]‘s solution was to make his own solar lanterns and in the process he came up with a great way of cutting his own solar panels.

[Jake] turned to ebay to source 100 3″ x 6″ solar panels for about $30. These are broken panels, factory rejects, but still are able to produce the 0.5 Volts they should. Since these are rather large panels for a solar lantern, [Jake] needed a way to cut these panels into manageable sizes.

To cut the panels, [Jake] made a box to fit a Dremel with a right angle attachment and a port for a vacuum cleaner. There’s a sled for the panels with markings at 40, 80, 75, and 150 mm so the panels can be quickly cut to size with a diamond cutting wheel.

After the boards are cut, [Jake] checks them out with a multimeter to be sure they’re producing the half volt they should. After that, it’s a simple matter of soldering them together and adding them to his solar lanterns.

$4 volt meter from a dollar store pedometer

[Paulo]‘s got a few solar panels on his shed, and while he does have a fairly nice setup with a battery charge controller, he found himself looking around for a panel voltmeter. Of course you can buy a panel voltmeter for under $20, but [Paulo] wanted something that fit his 4-4-4 plan; his voltmeter should cost under $4, draw less than 4mA, and last for 4 years. The jury is still out on the 4 year qualifier, but he did manage to meet his other goals by repurposing a dollar store pedometer as a voltmeter.

The pedometer in question is a very simple device. After inspecting the PCB, [Paulo] found it operates by looking at a trigger pin and incrementing the number on the display each time the circuit closed. [Paul] designed a very small PIC12F-powered circuit that reads the voltage of his batteries and triggers the pedometer’s LCD for every 10th of a volt. To display 12.6 Volts, [Paulo]‘s code triggers the LCD 126 times, for example.

After wiring up the reset button so the display will go back down to zero for each new reading, [Paulo] encased his new volt meter in a plastic box. It’s not exactly a fast way of measuring voltage, but seeing as how that won’t change very fast, it’s the perfect solution for [Paulo]‘s solar charger setup.

Saving the ISS by hacking a toothbrush

 

We absolutely love these stories of hacker ingenuity saving peoples lives. In this case, it was aboard the ISS, and the item being hacked was a toothbrush.

The story is as follows. Some equipment failed, as space junk tends to do, and the astronauts found themselves needing to do some repairs. Upon inspection, they couldn’t remove some modules due to an accumulation of “space dust” around some bolts.  This was especially troubling as the unit in question was something that was supposed to route power from some of the solar arrays to the ISS. Even more troubling is that another unit failed while they were assessing the situation.

Realizing they had to act fast so as not to lose too much power to function, they cobbled together some tools to allow them to clean out the access ports and remove the units for repair. A task that sounds like an easy solution here on earth proved to be life threatening in space. Eventually though, their makeshift tools came to the rescue and they were able to repair and restore power.

A perpetually powered wireless outpost

For [Justin], the topic of remotely powering electronics in the field comes up often. So often in fact he decided to put up a tutorial for powering electronics from solar power and batteries, as well as sending and retrieving data with the help of a cellular connection.

The electronics [Justin] chose for his remote wireless project include an AT&T 3G connection to the Internet provided by a Beaglebone, BeagleTouch display, and BeagleJuice battery pack. Of course an Arduino had to make it into this project, so a few light sensors were wired into a few Arduino Unos and connected to the Beaglebone.

After finding a few deep cycle boat batteries, [Justin] wired up a pair of solar panels that put out about 200 mA in full sun. This equates to about 2700 mAh a day, about 300 mAh more than his Beaglebone/Arduino/3G connection/WiFi setup needs per day.

As for what [Justin] can do with his wireless outpost, it makes setting up remote sensors for agriculture a breeze, and could easily be used to automagically send pictures from a game camera straight to a web page. Pretty neat, and very useful if you need to wire up sensors in the field to the Internet.

[Read more...]

Raspberry Pi keeps tabs on your solar power setup

raspberrypi-solarlogger

[Brian Dorey] has been adding green power solutions to his home for some time now, and as things have progressed, he has experimented with several different iterations of data loggers. The latest system watching over his solar power setup is a Raspberry Pi armed with a custom-built I2C analog/digital converter.

The Rasp Pi is responsible for monitoring several different temperature sensors related to his solar water heating and storage system, but that’s just the beginning. It also keeps watch over his roof-mounted solar electric panels, his battery bank, and its charge controller. For good measure, he also monitors his home’s temperature and his water tank’s recirculation pump because, why the heck not?

All of the collected data is relayed to his web server where it is handsomely displayed for his perusal and analysis. [Brian] has made his code available here, so you can monitor your home in the same fashion with little fuss.