Microsoft Surface Book Teardown Reveals Muscle Wire Mechanism

It’s hard to resist the temptation to tear apart a shiny new gadget, but fortunately, iFixIt often does it for us. This helps to keep our credit cards safe, and reveal the inner workings of new stuff. That is definitely the case with the Microsoft Surface Book teardown that they have just published. Apart from revealing that it is pretty much impossible to repair yourself, the teardown reveals the mechanism for the innovative hinge and lock mechanism. The lock that keeps the tablet part in place when in laptop mode is held in place by a spring, with the mechanism being unlocked by a piece of muscle wire.

We are no strangers to muscle wire (AKA Nitinol wire or Shape Metal Alloy, as it is sometimes called) here: we have posted on its use in making strange robots, robotic worms and walls that breathe. Whatever you call it, it is fun stuff. It is normally a flexible wire, but when you apply a voltage, it heats up and contracts, much like the muscles in your body. Remove the voltage, and the wire cools and reverts to its former shape. In the Microsoft Surface Book, a single loop of this wire is used to retract the lock mechanism, releasing the tablet part.

Unfortunately, the teardown doesn’t go into much detail on how the impressive hinge of the Surface Book works. We would like to see more detail on how Microsoft engineered this into the small space that it occupies. The Verge offered some details in a post at launch, but not much in the way of specifics beyond calling it an “articulated hinge”.

UPDATE: This post was edited to clarify the way that muscle wire works. 11/4/15.

What to Do with Old LCD Screens: Hack Your Own Electrochromatic Glass

There’s something decidedly science fiction-like about electrochromatic glass. A wave of a hand or a voice command and the window goes dark (or goes transparent). You can get glass like this today or you can add (pricey) film to existing glass, if you prefer.

[Artem Litvinovich] thought about using LCDs as window panes twenty years ago, but the cost was, of course, prohibitive. He recently realized that he had easy access to LCDs out of broken laptops and decided to see if it would be useful as a small window.

Continue reading “What to Do with Old LCD Screens: Hack Your Own Electrochromatic Glass”

Witness The Birth of a 36-Lens Panoramic Camera

We are suckers for a teardown video here at Hackaday: few things are more fascinating than watching an expensive piece of equipment get torn apart. [Jonas Pfeil] is going the other way, though: he has just published an interesting video of one of his Panono panoramic ball cameras being built.

The Panono is a rather cool take on the panoramic camera: it is a ball-shaped device fitted with 36 individual cameras. When you press the button and throw the camera in the air, it waits until the highest point and then takes pictures from all of the cameras. Sound familiar? We first coverd [Jonas’] work way back in 2011.

Photos are stitched together into a single panoramic image with an equivalent resolution of up to 106 megapixels. The final image is panoramic in both horizontal and vertical directions: you can scroll up, down, left, right or in and out of the image. Since images are all taken at the same time you don’t have continuity problems associated with moving a single camera sensor. There are a number of sample images on their site but keep reading for a look at some of the updated hardware since our last look at this fascinating camera.

Continue reading “Witness The Birth of a 36-Lens Panoramic Camera”

VirtualBench Tear Down

What do you get when you cross a mixed-signal oscilloscope, a function generator, a multimeter, a power supply, and some programmable digital I/O in a box? Sounds like the set up to a very geeky joke, but it is actually National Instrument’s VirtualBench product. [Shahriar] has one and wanted to know what was inside, so he did a tear down.

Continue reading “VirtualBench Tear Down”

Analyzing The Microsoft Surface Touch Keyboard Cover

The Microsoft Surface is an awesome Tablet PC, but it has one problem: there is just one USB port on it. There is an additional port, though: a connector for the Surface Touch Keyboard connector. That’s what [Edward Shin] is looking into, with the long-term intention of creating an adapter that allows him to connect a Thinkpad keyboard to this proprietary connector. His initial work identified the connector as using Microsoft’s own HID over I2C protocol, which sends the standard USB HID protocol over an I2C connection. So far so good, but it seems to get a little odd after that, with a serial connection running at nearly 1 Mbps and sending 9 bits per transfer with 1 stop bit. Presumably this is because Microsoft had planned to release other devices that used this connector, but this hasn’t panned out so far.

Anybody want to help him out? He has posted some captured data from the connection for analysis, and is looking for assistance. We hope he manages to build his converter: a Microsoft Surface with a decent keyboard and an open USB port would be a great portable setup. Bonus: for those teardown fans among you, he has done a great teardown of a Touch Cover keyboard that reveals some interesting stuff, including a lot of well-labelled test points.

Via [Reddit]

$50 Multimeter Comparison and Teardown

We remember when buying even a modest digital multimeter was a big investment. These days, you can find tool stores giving away cheap meters and if you are willing to spend even a little money, you can buy a meter with tons of features like capacitance, temperature, and other measurements.

Like most things, though, you can pay a little money for a bargain, or you can overpay for a dud. To help you pick, [TechnologyCatalyst] decided to do an extensive video review of 15 different meters in the under $50 price category.

If you are looking for a quick video to watch, you might want to move along. The review is in nine videos ranging from an introduction, to a comparison of build quality, discussion about the displays on each meter, and, of course, the measurement capability of each meter. There’s even a video that shows tear downs so you can see inside the instruments.

Continue reading “$50 Multimeter Comparison and Teardown”

Teardown of Intel RealSense Gesture Camera Reveals Projector Details

[Chipworks] has just released the details on their latest teardown on an Intel RealSense gesture camera that was built into a Lenovo laptop. Teardowns are always interesting (and we suspect that [Chipworks] can’t eat breakfast without tearing it down), but this one reveals some fascinating details on how you build a projector into a module that fits into a laptop bezel. While most structured light projectors use a single, static pattern projected through a mask, this one uses a real projection mechanism to send different patterns that help the device detect gestures faster, all in a mechanism that is thinner than a poker chip.

mechanism1It does this by using an impressive miniaturized projector made of three tiny components: an IR laser, a line lens and a resonant micromirror. The line lens takes the point of light from the IR laser and turns it into a flat horizontal line. This is then bounced off the resonant micromirror, which is twisted by an electrical signal. This micromirror is moved by a torsional drive system, where an electrostatic signal twists the mirror, which is manufactured in a single piece. The system is described in more detail in this PDF of a presentation by the makers, ST Micro. This combination of lens and rapidly moving mirrors creates a pattern of light that is projected, and the reflection is detected by the IR camera on the other side of the module, which is used to create a 3D model that can be used to detect gestures, faces, and other objects. It’s a neat insight into how you can miniaturize things by approaching them in a different way.