Propeller Backpack for Lazy Skiers

At first glance, it looks eerily similar to Inspector Gadget’s Propeller Cap, except it’s a backpack. [Samm Sheperd] built a Propeller Backpack (video, embedded after the break) which started off as a fun project but almost ended up setting him on fire.

Finding himself snowed in during a spell of cold weather, he found enough spare RC and ‘copter parts to put his crazy idea in action. He built a wooden frame, fixed the big Rimfire 50CC outrunner motor and prop to it, slapped on a battery pack and ESC, and zip-tied it all on to the carcass of an old backpack.

Remote control in hand, and donning a pair of Ski’s, he did a few successful trial runs. It looks pretty exciting watching him zip by in the snowy wilderness. Well, winter passed by, and he soon found himself in sunny California. The Ski’s gave way to a bike, and a local airfield served as a test track. He even manages to put in some exciting runs on the beach. But the 10S 4000 mAH batteries seem to be a tad underpowered to his liking, and the motor could do with a larger propeller. He managed to source a 12S 10,000 mAH battery pack, but that promptly blew out his Aerostar ESC during the very first static trial.

He then decided to rebuild it from ground up. A ten week welding course that he took to gain some college credits proved quite handy. He built a new TiG welded Aluminium frame which was stronger and more lightweight than the earlier wooden one. He even thoughtfully added a propeller safety guard after some of his followers got worried, although it doesn’t look very effective to us. A bigger propeller was added and the old burnt out ESC was replaced with a new one. It was time for another static trial before heading out in to the wide open snow again. And that’s when things immediately went south. [Samm] was completely unaware as the new ESC gloriously burst in to flames (8:00 into the third video), and it took a while for him to realize why his video recording friend was screaming at him. Check out the three part video series after the break to follow the story of this hack. For a bonus, check out the 90 year old gent who stops by for a chat on planes and flying (8:25 in the third video).

But [Samm] isn’t letting this setback pin him down. He’s promised to take this to a logical finish and build a reliable, functional Propeller Backpack some time soon. This isn’t his first rodeo building oddball hacks. Check out his experiment on Flying Planes With Squirrel Cages.

We seem to be catching a wave of wind-powered transportation hacks these days. Hackaday’s own [James Hobson] spent time in December on a similar, arguably safer, concept. He attached ducted fans to the back of a snowboard. We like this choice since flailing limbs won’t get caught in these types of fans.

Continue reading “Propeller Backpack for Lazy Skiers”

The Icon Of American Farming That You Now Have To Hack To Own

If you wanted to invoke American farming with colour, which colours would you pick? The chances are they would be the familiar green and yellow of a John Deere tractor. It’s a name that has been synonymous with US agriculture since the 1830s, when the blacksmith whose name appears on the tractors produced his first steel plough blade. The words “American icon” are thrown around for many things, but in the case of John Deere there are few modern brands with as much history to back up their claim to it.

A trip across the prairies then is to drive past Deere products in use from most of the last century. They will still supply parts for machines they made before WW2, and farmers will remain loyal to the brand throughout their lives.

Well… That used to be the case.  In recent years a new Deere has had all its parts locked down by DRM, such that all maintenance tasks on the tractors must be performed by Deere mechanics with the appropriate software. If your tractor breaks in the field you can fit a new part as you always have done, but if it’s a Deere it then won’t run until a Deere mechanic has had a look at it. As a result, Motherboard reports that American farmers are resorting to Ukrainian-sourced firmware updaters to hack their machines and allow them to continue working.  An icon of American farming finds itself tarnished in its heartland.

We’ve reported on the Deere DRM issue before, it seems that the newest development is a licence agreement from last October that prohibits all unauthorised repair work on the machines as well as insulating the manufacturer from legal action due to “crop loss, lost profits, loss of goodwill, loss of use of equipment … arising from the performance or non-performance of any aspect of the software”. This has sent the farmers running to illicit corners of the internet to spend their dollars on their own Deere electronic updating kits rather than on call-out fees for a Deere mechanic. Farmers have had centuries of being resourceful, this is simply the twenty-first century version of the hacks they might have performed decades ago with baler twine and old fertiliser sacks.

You might ask what the hack is here, as in reality they’re just buying a product online, and using it. But this is merely the latest act in a battle in one industry that could have ramifications for us all. Farmers are used to the model in which when they buy a machine they own it, and the Deere DRM is reshaping that relationship to one in which their ownership is on the manufacturer’s terms. How this plays out over the coming years, and how it affects Deere’s bottom line as farmers seek tractors they can still repair, will affect how other manufacturers of products non-farmers use consider DRM for their own business models.

Outside the window where this is being written is a Deere from the 1980s. It’s a reliable and very well-screwed-together tractor, though given the subject of this piece it may be our last green and yellow machine. Its dented badge makes a good metaphor for the way at least for us the brand has been devalued.

Thanks [Jack Laidlaw] for the tip.

You Will Want To Build This Canoe

There is something about a wooden boat that should be facsinating to most makers, the craftsmanship and level of work that goes into creating a sea-, lake-, or river-worthy craft with smooth lines, from little more than thin pieces of wood. Master boatbuilders have apprenticeships that last years, and spend entire careers refining their art.

[Adam], also known as [A Guy Doing Stuff], is not a master boatbuilder. In his words, he’s just a guy with some basic woodworking knowledge, who builds canoes from cedar strips. But you wouldn’t know that he has no training as a boatbuilder from looking at his work, which you can do because he’s posted some beauthiful videos.

We see the creation of a skeleton to produce the basic shape of the boat, followed by the creation of prow and stern. Then there is a painstaking application of carefully shaped cedar strips to make the hull, and a single layer of glass fibre on either side. With the gel coat applied though you wouldn’t know the fibre was there. Finally we have the creation of the seats and interior fittings, followed by the canoe being paddled across a lake.

Few of us may ever make a canoe. But if we did, we’d want it to be one like this one.

Continue reading “You Will Want To Build This Canoe”

Toy Car Pumps the Wheels with Balloon Power

We’ve had our eye on [Greg Zumwalt]. He’s been working on some very clever 3D-printed mechanisms and his latest prototype is an air engine for a toy car. You can supply the air for the single cylinder with a compressor, or by blowing into it, but attaching an inflated balloon makes the system self-contained.

Last week we saw the prototype of the engine by itself, and wondered if this had enough power to drive a little train engine. We were almost right as here it is powering the front wheels of a little car.

This isn’t [Greg’s] first rodeo. He’s been working on self-contained locomotion for a while now. Shown here is his spring-driven car which you pull backwards to load the spring. It’s a common feature in toys, and very neat to see with the included 3D-printed spring hidden inside of the widest gear.

That print looks spectacular, but the balloon-powered prototype tickles our fancy quite a bit more. Make sure you have your sound on when you watch the video after the break. It’s the chuga-chuga that puts this one over the top. [Greg] hasn’t yet posted files so you can print your own (it’s still a prototype) but browse the rest of his designs as you wait — they’re numerous and will bring an even bigger smile to your face. Remember that domino-laying LEGO bot [Matthias Wandel] built a few years back? [Greg] has a printable model for it!

Continue reading “Toy Car Pumps the Wheels with Balloon Power”

Autonomous Delivery and the Last 100 Feet

You’ve no doubt by now seen Boston Dynamics latest “we’re living in the future” robotic creation, dubbed Handle. [Mike Szczys] recently covered the more-or-less-official company unveiling of Handle, the hybrid bipedal-wheeled robot that can handle smooth or rugged terrain and can even jump when it has to, all while remaining balanced and apparently handling up to 100 pounds of cargo with its arms. It’s absolutely sci-fi.

[Mike] closed his post with a quip about seeing “Handle wheeling down the street placing smile-adorned boxes on each stoop.” I’ve recently written about autonomous delivery, covering both autonomous freight as the ‘killer app’ for self-driving vehicles and the security issues posed by autonomous delivery. Now I want to look at where anthropoid robots might fit in the supply chain, and how likely it’ll be to see something like Handle taking over the last hundred feet from delivery truck to your door.

Continue reading “Autonomous Delivery and the Last 100 Feet”

Arduino + Geometry + Bicycle = Speedometer

It is pretty easy to go to a big box store and get a digital speedometer for your bike. Not only is that no fun, but the little digital display isn’t going to win you any hacker cred. [AlexGyver] has the answer. Using an Arduino and a servo he built a classic needle speedometer for his bike. It also has a digital display and uses a hall effect sensor to pick up the wheel speed. You can see a video of the project below.

[Alex] talks about the geometry involved, in case your high school math is well into your rear view mirror. The circumference of the wheel is the distance you’ll travel in one revolution. If you know the distance and you know the time, you know the speed and the rest is just conversions to get a numerical speed into an angle on the servo motor. The code is out on GitHub.

Continue reading “Arduino + Geometry + Bicycle = Speedometer”

Simple and Effective Car Lock Jammer Detector

[Andrew Nohawk], has noticed a spike of car break-ins and thefts — even in broad daylight — in his native South Africa. The thieves have been using remote jammers. Commercial detectors are available but run into the hundreds of dollars. He decided to experiment with his own rig, whipping up a remote jamming ‘detector’ for less than the cost of a modest meal.

Operating on the principle that most remote locks work at 433MHz, [Nohawk] describes how criminals ‘jam’ the frequency by holding down the lock button on another device, hoping to distort or outright interrupt the car from receiving the signal to lock the doors. [Nohawk] picked up a cheap 433MHz receiver (bundled with a transceiver), tossed it on a breadboard with an LED connected to the data channel of the chip on a 5V circuit, and voila — whenever the chip detects activity on that frequency, the LED lights up. If you see sustained activity on the band, there’s a chance somebody nearby might be waiting for you to leave your vehicle unattended.

If you want to know more about how these jamming attacks work, check out [Samy Kamkar’s] talk from the Hackaday SuperConference.

Continue reading “Simple and Effective Car Lock Jammer Detector”