Full-size Lego Car Can Hit 30km/h!

legocar

[Steve Sammartino] is a Melbourne entrepreneur, and he had an idea: could it be possible to design and make a functional full-size Lego car?

He sent out a single tweet to try to crowd fund the project:

Anyone interested in investing $500-$1000 in a project which is awesome & a world first tweet me. Need about 20 participants…

Not one, not two, but forty Australians pledged money to start this crazy idea dubbed the #SuperAwesomeMicroProject. With the money raised, [Steve] and [Raul Oaida] purchased over 500,000 Lego pieces and began the build in Romania, where [Raul] lives.

Now before you get too excited, the car is not “fully” made out of Lego. It features real tires and some select load bearing elements. That being said, the entire engine is made completely out of Lego. It features four orbital engines utilizing a total of 256 pistons. The top speed they tested it to was about 20-30km/h — it might go faster, but they didn’t want to risk a catastrophic failure.

Since its completion (it took nearly 18 months to build), it’s been shipped back to a secret location in Melbourne, but the team has made an excellent video showcasing the project. Stick around after the break to see your childhood dreams come to life.

[Read more...]

Shopping Trolley is Wired for Camp

cart-1

[James] needed some cool transportation for the upcoming Easter Camp in New Zealand, so he created a custom motorized shopping trolley that is sure to turn heads. The base of this project is a standard mobility scooter, which conveniently has a modular design. All of the electronics have connectors for quick service and the entire rear axle and motor assembly pop off with the pull of a lever.

[James] had to do a bit of welding and chassis rework to achieve his goal of mounting a shopping cart top to the scooter’s frame. Once finished, though, the setup looked great. It was actually comfortable to sit in, as [James] made a cutout for the driver’s feet to pass through. The real fun came with the electronics. The trolley is the most wired mobility scooter mod we’ve ever seen. Most of the electronics are contained in a project box under the seat, with several Arduinos that control the various systems: interfacing with the original scooter electronics, a GPS receiver, and a GSM radio. [James] also went as far as to add RGB LED headlights, a horn, and a multi-tone siren from Jaycar.

Driving the trolley is simple. An arcade joystick selects the speed, and the scooter’s standard hand controls are used for forward, reverse, and steering. One of the more interesting mods [James] made was a custom Windows app to control the trolley via a USB radio module. The entire system can be secured, with the security code stored in NVRAM to prevent a power cycle from unlocking the system. [James] can even command the trolley to go forward or reverse from his touch screen. We’d love to see him add a steering servo to make it a completely remote-controlled solution, though this step would require some sort of clutch for manual control.

The final design works very well.  [James] may not win any drag races by keeping scooter’s original speed controls and associated electronics, but he did extend the range with larger batteries, so we’re sure the trolley will be a hit all over the camp. Similar projects have been built using the base of an electric wheelchair. If you have one that you want to control without invasive changes to the hardware, check out this accessibility hack which interfaces using a connector.

[Read more...]

An Awesome Electric Bike

bike

Converting a motorcycle to electric is always a favorite project of ours, and [Peter]‘s build is up there with the rest of them.

The bike is a 2002 ZX6E he bought from a salvage shop. It had been parted out over the years and for $250 this very light aluminum frame made the for the perfect electric conversion frame. After learning MIG welding from his brother, [Peter] cut up a few plates and built a motor mount for his new 4.2 kW power plant.

The controller is a 300 amp IGBT he found on eBay, with an extraordinarily sturdy looking circuit built into an ammo box. The motor from the bike was replaced with 16 60Ah LiFe cells providing 52 volts. [Peter] also built his own battery management system using a Cypress PSoC 3 microcontroller and a beautiful custom PCB.

It’s still a long way from being finished, but already [Peter] has a great looking bike and an awesome weekend project on his hands.

Bally’s Bomber – A 1/3rd Replica of a B-17G

bally bomber

One of our tipsters just sent us this fascinating story about The Bally Bomber, a single man’s huge undertaking that started back in 1999. It’s a 1/3rd scale version of the B-17G Bomber — and no, it’s not remote controlled, there will be a pilot.

Not familiar with the B-17G? What about its trade name? It’s called the Boeing B-17 Flying Fortress. This massive bomber was developed back in the 1930′s for the United States Army Air Corps as a combination between the Boeing 247 transport plane and the experimental Boeing XB-15 Bomber.

8680 of the B-17G model were built, but as of September 2011, only 13 of the entire B-17 family remain airworthy. The Bally Bomber is the only known scale replica, and looking through the progress photos it is an absolutely jaw-dropping project. It hasn’t been test flown yet, but they are getting painfully close to its maiden flight.

For more information, you can also check out their Facebook page which seems to be updated on a regular basis.

[Thanks Ryan!]

Pedaling at 128km/h

100mph bike

[Donhou] had a dream. To create a road bike capable of reaching 100mph (160km/h).

He damn well near did it too. The goal of this project wasn’t to set a land speed record, but more of an experiment in design, and building a really fast bike that still looks like a bicycle. In case you’re wondering though, the land speed record is currently set at 167mph by [Fred Rompelberg] who was drafting behind a dragster on the Salt Flats of Bonneville.

The bike features custom everything; a welded lightweight frame using Columbus Max tubing (to help with speed wobbles), super low handlebars for aerodynamics, and a massive 104 tooth chainring which almost scrapes the ground as you pedal. Even the rims and tires are unique — regular bicycle wheels just aren’t designed to go that fast.

We aren’t even bike nuts, but we thoroughly enjoyed the awesome 9-minute documentary on this project. Check it out after the break.

[Read more...]

A Simple, Overkill, Electric Car

car

If you’re building an electric car nowadays, you’re probably looking at taking a normal, gas-powered car and replacing the engine and transmission with an electric motor and batteries. [Gahaar] thought this is a rather dumb idea; all the excesses of an internal combustion-powered car, such as exhaust, cooling, differential, and fuel storage is completely unnecessary. Building a new electric car from the frame up is a vastly more efficient means of having your own electric car. So that’s what he did.

[Gahaar] build his new chassis around a single box made of 3mm aluminum sheet. Attached to this box are two AC induction motors at the rear of the car, negating the need for a differential, with 45 lithium cells stuffed into the middle of the box. There’s no gearbox here, greatly reducing the complexity of the build, and with the batteries providing 145V and 100Ah, this simple car has more than enough power for a lot of fun.

The suspension and steering were taken from a wrecked car, in this case a Mazda MX5, or Miata for those of us in North America. The Miata suspension easily unbolts from the frame of the wrecked car, and with just a little bit of welding can easily be attached to the new electric chassis.

Even though [Gahaar]‘s car is basically just a bit of aluminum, motors, suspension, and batteries, he’s getting some awesome performance out of it; he estimates a top speed of 100mph with about 60 miles per charge. It’s an awesome way to get around the farm, and with a custom fiberglass body, we can easily see this being one of the coolest electric vehicles ever made.

[Charles] Tears Into a Ford Fusion Battery

fordBattery

Any time we hear from [Charles Z. Guan], we know it’s going to be a good feature. When he’s linking us to a blog post with phrases like “If you touch the wrong spots, you will commit suicide instantly”, we know it will be a really good feature. [Charles] is no stranger to Hackaday – we’ve featured his GoKarts, Quadcopters, and scooters before. He was even generous enough to let a couple of Hackaday writers test drive ChibiKart around Maker Faire New York last year.

This time around, [Charles] is working on a power system for chibi-Mikuvan, his proposed entry of the Power Racing Series. He’s decided to go with a used battery from a hybrid vehicle. As these vehicles get older, the batteries are finally becoming available on the used market. [Charles] was able to pick up a 2010 Ford Fusion NiMh battery for only $300. These are not small batteries. At 20” wide by 48” long, and weighing in at 150 pounds, you’ll need 2 or 3 people to move one. They also pack quite a punch: 2.1kWh at 275V. It can’t be understated, taking apart batteries such as these gives access to un-fused lethal voltages. Electrocution, arcs, vaporized metal, fire, and worse are all possibilities. If you do decide to work with an EV or hybrid battery, don’t say we (and [Charles]) didn’t warn you.

As [Charles] began taking apart the battery, he found it was one of the most well thought out designs he’d ever seen. From the battery management computers to the hydrogen filled contactors, to the cooling fan controller, everything was easy to work on. The trick to disassembly was to pull the last module out first. Since all the modules are wired in series, removing the last module effectively splits the pack in half, making it much safer to work on. The battery itself is comprised of 28 modules. Each module contains two 4.8V strings of “D” cell sized NiMh batteries. The battery’s capacity rating is 8000 mAh, and [Charles] found they still took a full charge. Since he doesn’t need the pack just yet, [Charles] removed the final bus bars, rendering it relatively safe. Now that he has a power source, we’re waiting to see [Charles'] next stop on the road to chibi-Mikuvan.