Bluetooth Automation Remote Hangs Around

Using your smartphone to control your home automation system gives you a lot of flexibility. But for something as simple as turning the lights on and off, it can be a pain to go through the whole process of unlocking your phone, choosing the right browser page or app, and then finally hitting the button you need. It’d be much simpler if it could all be done at the touch of a single, physical button – but phones don’t have many of those anymore. [falldeaf] brings the solution – a four-button Bluetooth remote for your smartphone that’s wearable, to boot.

The project is built around the RFDuino, an Arduino platform used for quickly and easily building Bluetooth compatible projects. So far, so simple – four buttons wired into a microcontroller with wireless capability onboard. The real trick is the 3D-printed clothespin style case which allows you to clip the four-button remote onto your clothes. [falldeaf]’s first attempt was a palm-mounted setup that they found got in the way of regular tasks; we agree that the wearable version offers a serious upgrade in utility.

The smartphone side of things is handled with a custom app [falldeaf] coded using PhoneGap. This is where actions for the buttons can be customized, including using the buttons to navigate a menu system to enable the user to select more than just one function per button. It adds a high level of flexibility, so you can create all kinds of macros to control your whole home automation system from your button clip.

It’s really great to see a project that considers ergonomics and usability above and beyond just creating the baseline functionality. Follow this train of thought and you’ll find yourself enjoying your projects in the use phase well beyond the initial build. Another great example is this self-charging electrically heated jacket. Video after the break.

Continue reading “Bluetooth Automation Remote Hangs Around”

Voltmeter Speaks MQTT Without Libraries

[Emilio Ficara] [built himself an Internet-connected MQTT multimeter]( (translated from Italian by robots). Or maybe we should say that [Emilio Ficara] undertook a long string of cool hacks that ended up in a WiFi-enabled multimeter, because the destination isn’t nearly as interesting as the voyage.


The multimeter, a DT-4000ZC, has a serial output but instead of transferring the data directly, it sends which cells on the LCD screen need to be activated. For testing along the way, [Emilio] used his own USB-serial-to-ESP01 dongle, which sounds like a useful tool to have around if you’re debugging an AT command session. He made a cute AVR SPI-port debugging aid with a reset button and diagnostic LEDs that we’re going to copy right now. Other home-made tools, like a 3.7V Li-ion battery manager and a serial data snooper make this project worth a look.

Continue reading “Voltmeter Speaks MQTT Without Libraries”

Remote Controlling A Dog

Until the industrial revolution, humans made use of animals to make our labor easier. This is still seen in some niche areas, like how no machine yet has been invented that’s as good at sniffing out truffles as pigs are. [William] has hearkened back to humanity’s earlier roots, but in a more modern twist has made something of a general purpose dog that could feasibly do any work imaginable. Now his dog is remote-controlled.

[William] accomplished the monumental task in a literally cartoonish fashion using the old trope of hanging a hot dog in front of something’s face to get them to chase it. The attachment point was fitted with a remote control receiver and an actuator to get the hanging hot dog to dangle a little bit more to the dog’s right or left, depending on where the “operator” wants the dog to go. [William]’s bulldog seems to be a pretty good sport about everything and isn’t any worse for wear either.

Believe it or not, there has been some actual research done into remote controlling animals, although so far it’s limited to remote-controlled cockroaches. We like the simplicity of the remote-controlled dog, though, but don’t expect to see these rigs replacing leashes anytime soon!

Continue reading “Remote Controlling A Dog”

Baby’s First Hands-Free Stroller

So you’ve had your first child. Congratulations; your life will never be the same again. [Dusan] was noticing how the introduction of his children into his life altered it by giving him less time for his hobbies in his home laboratory, and decided to incorporate his children into his hacks. The first one to roll out of his lab is a remote-controlled baby stroller.

After some engineering-style measurements (lots of rounding and estimating), [Dusan] found two motors to drive each of the back wheels on a custom stroller frame. He created a set of wooden gears to transfer power from the specialized motors to the wheels. After some batteries and an Arduino were installed, the stroller was ready to get on the road. At this point, though, [Dusan] had a problem. He had failed to consider the fact that children grow, and the added weight of the child was now too much for his stroller. After some adjustments were made (using a lighter stroller frame), the stroller was eventually able to push his kid around without any problems.

This is an interesting hack that we’re not sure has much utility other than the enjoyment that came from creating it. Although [Dusan]’s kid certainly seems to enjoy cruising around in it within a close distance to its operator. Be sure to check out the video of it in operation below, and don’t forget that babies are a great way to persuade your significant other that you need more tools in your work bench, like a CNC machine for example.

Continue reading “Baby’s First Hands-Free Stroller”

Open Sound Control of Kitchen Lights

Controlling the Internet of Things is all about passing information around. Realistically, it doesn’t matter what is used, be it MQTT, HTTP, serial data, whatever, and it doesn’t really matter what data is sent as long as the sender and receiver agree on what the data means. MIDI could be used to pass information back and forth, for example and while MIDI is good for some things, Open Sound Control is a more modern alternative and one area where OSC excels over MIDI is Internet connectivity. [Matt] used OSC to control the lighting he installed in his kitchen.

ESP8622-1 and Buck Converter

[Matt] had moved in to a new house and wanted some under-cupboard lighting for his kitchen. He got a few cheap warm white LED lights from the Internet and went about wiring them together. For the controller, an ESP8266-1 was used as well as a 12 volt constant-current buck converter. The software runs on the Sming framework, rather than the Arduino framework, and listens for incoming OSC messages. When it receives a command on a specific channel, a callback function turns the lights on and off.  [Matt] also added a switch on the outside of the control box to manually turn the lights on and off.

OSC might not be the right choice for this project, and even [Matt] doesn’t know why he used it, but [Matt] got it working and uses an app on his phone to control it. If he wanted to, he could have used Ableton or another controller to control the lights. (He hasn’t wanted to yet.) OSC is an interesting alternative to MIDI and can also be used with an Arduino without an ethernet shield, or with RFID tags.

ESP-ing a Philips Sound System.

IoT-ifying old stuff is cool. Or even new, offline stuff. It seems to be a trend. And it’s sexy. Yes, it is. Why are people doing this, you may ask: we say why not? Why shouldn’t a toaster be on the IoT? Or a drill press? Or a radio? Yes, a radio.

[Dr. Wummi] just added another device to the IoT, the Internet of Thongs as he calls it. It’s a Philips MCM205 Micro Sound System radio. He wanted to automate his radio but his original idea of building a setup with an infrared LED to remotely control it failed. He blamed it to “some funky IR voodoo”.  So he decided to go for an ESP8266 based solution with a NodeMCU. ESP8266 IR remotes have been known to work before but maybe those were just not voodoo grade.

After opening the radio up, he quickly found that the actual AM/FM Radio was a separate module. The manufacturer was kind enough to leave the pins nicely labelled on the mainboard. Pins labelled SCL/SDA hinted that AM/FM module spoke I²C. He tapped in the protocol via Bus Pirate and it was clear that the radio had an EEPROM somewhere on the main PCB. A search revealed a 24C02 IC in the board, which is a 2K I²C EEPROM. So far so good but there were other functionalities left to control, like volume or CD playing. For that, he planned to tap into the front push button knob. The push button had different resistors and were wired in series so they generated different voltages at the main board radio ADC Pins. He tried to PWM with the NodeMCU to simulate this but it just didn’t work.

Continue reading “ESP-ing a Philips Sound System.”

Toshiro Kodera: Electromagnetic Gyrotropes

We’ve learned a lot by watching the talks from the Hackaday Superconferences. Still, it’s a rare occurrence to learn something totally new. Microwave engineer, professor, and mad hacker [Toshiro Kodera] gave a talk on some current research that he’s doing: replacing natural magnetic gyrotropic material with engineered metamaterials in order to make two-way beam steering antennas and more.

If you already fully understood that last sentence, you may not learn as much from [Toshiro]’s talk as we did. If you’re at all interested in strange radio-frequency phenomena, neat material properties, or are just curious, don your physics wizard’s hat and watch his presentation. Just below the video, we’ll attempt to give you the Cliff’s Notes.

Continue reading “Toshiro Kodera: Electromagnetic Gyrotropes”