Modular Arduino Based Infrared Thermometer

IRTemperature

[Brian] started out with a clear and concise goal, “allow a regular human to associate an audible tone with a temperature from an infrared contactless thermometer.” With his latest project, the ESPeri.IRBud, he has achieved this goal.

One of our favorite parts of [Brian's] post is his BOM. Being able to easily see that the IR temperature sensor costs $26 at DigiKey is unbelievably helpful to readers. This specific sensor was chosen because others have successfully interfaced it with the Arduino. Not having to reinvent the wheel is good thing! For the build, [Brian] decided to hook up the IR temperature sensor to a re-purposed flexible iPhone headset wire. Having used headphone sockets to connect to the sensor and speakers, the actual device is quite modular. Hearing this thing in action is quite cool, it almost sounds like old-school GameBoy music! Check it out after the break.

Have you used an IR temperature sensor in one of your projects? Let us know.

[Read more...]

We Asked For It — An Arduino Bowel Gauge

toilet

Well, we asked for it, and [TV Miller] delivered this hilarious and surprisingly accurate bowel gauge.

Between our recent Wiping Your Bum with an Arduino feature and how to Measure Poop for a Better Sanitation Service, we guess we should have seen this coming. And you know what? It’s pretty awesome.

He’s using an Arduino Uno with a home-made resistance sensor to “hack our bowels”. After all, how can you have a proper diet without knowing exactly what is coming out of you? Two copper or aluminum strips make up the resistance sensor with a few known resistors, a capacitor and a potentiometer for adjustment. He’s even included an LCD display as well so you can see the volume of your excrement in real-time! Classy.

To see it in action (don’t worry, not that kind of action) stick around for the following video:

[Read more...]

Developed on Hackaday: Security and Arduino Compatibility

2013-12_Developed_on_Hackaday

Some of our readers noticed that the Hackaday community open-source offline password keeper (aka Mooltipass) has two incompatible characteristics: being secure and Arduino compatible.

Why is that? Arduino compatibility implies including a way to change the device firmware and accessing the microcontroller’s pins to connect shields. Therefore, some ill-intentioned individuals may replace the original firmware with one that would log all user’s inputs and passwords, or in another case simply sniff the uC’s signals. The ‘hackers’ would then later come to extract the recorded data. Consequently, we needed a secure tamper-proof Mooltipass version and an Arduino-compatible one, while allowing the former to become the latter.

Olivier’s design, though completely closed, will have several thinner surfaces directly above the Arduino headers. As a compromise, we therefore thought of sending a bootloader-free assembled version to the people only interested in the password keeper functionality, while sending a non-assembled version (with a pre-burnt bootloader) to the tinkerers. The Arduino enthusiasts would just need to cut the plastic at the strategic places (and perhaps solder headers to save costs). The main advantage of doing so is that the case would be the same for both versions. The drawback is that each board would have a different firmware depending on who it is intended for.

What do our reader think? For more detailed updates on the Mooltipass current status, you can always join the official Google group.

Ask Hackaday: Wiping Your Bum With An Arduino?

TP

Over or under? Standing or sitting? Truly, toilet paper has been the focus of the most irreconcilable arguments ever. The folks on the Arduino Stack Exchange have a far more important question: how do you trigger an alarm when your TP supply is low?

[user706837] asked the Internet this question in response to his kids never replacing an empty roll. This eliminates the most obvious means of notifying someone of an empty roll – looking at it before you sit down – and brings up a few interesting engineering challenges.

Most of the initial ideas deal with weight or some sort of light sensor that can differentiate between the white TP and the brown roll. A much, much more interesting solution puts a radioactive source in the TP holder’s spring-loaded rod and uses a sensor to detect how much TP is left. A quick back-of-the-wolfram calculation suggests this might be possible, and amazingly, not too dangerous.

We’re turning this one over to you, Hackaday readers. How would you design an empty toilet paper alarm? Bonus points awarded for ingenuity and cat resistance.

Image source, and also one of the longest and most absurd Wikipedia articles ever.

A Cocktail Shaker With Android And Arduino

drinks

The most rewarding part of any project must be sitting down to see the fruits of your labors set in action for the first time and relaxing with a nice drink. [Tony DiCola] is really showing off his ability to think ahead, because his smart cocktail shaker takes care of the post-build celebration, measuring out drinks with exacting precision.

The build measures out precise amounts of any liquid with the help of a small electronic scale [Tony] picked up from Harbor Freight. Instead of trying to interface with the electronics in the scale, he instead connected a INA125 instrument amplifier to the load cell. An Arduino micro measures the weight on the load cell, and with the known densities of gin, vermouth, and Kahlua, [Tony] can get a very good idea of how much liquid is in the cocktail shaker.

The really neat part of this build is the interface: [Tony] wrote an Android app for his tablet that talks to the Arduino with an Adafruit Bluefruit Bluetooth adapter. The app receives the current weight on the load cell, displays the current amount of liquor in the cocktail shaker, and provides step-by-step instructions for making any cocktail.

It’s a handy little device to keep around the liquor cabinet, and with an absurd amount of pumps and valves could easily become the basis for a very cool cocktail bot.

[Read more...]

Turning A Router Into An Arduino Yún

yun

The Arduino Yún was the first of a new breed of Arduinos that added a big honkin’ Linux System on Chip to the familiar ATMega microcontroller and unique pin headers. It’s a surprisingly powerful system, but also very simple: basically, it’s just an Atheros AR9331 running Linux, an ATMega32u4 doing its Arduino thing, both connected by a serial connection. The Atheros AR9931 is also found in a router popular amongst hardware hackers. It really was only a matter of time before someone ported the Yun software to a router, then.

[Tony] took a TL-WR703N router and put OpenWRT on it. Turning this router into the Linux side of a Yún was a simple matter of uploading the Yún software to the root directory of the router and rebooting it. The Arduino side of the Yún is handled by an Arduino Mega connected to the USB port of the router. A quick update to Arduino’s boards.txt file, and a hacked together Yún is just a strip of duct tape away.

The Yún may not be extremely popular, but it does have a few interesting use cases. Maybe not enough to drop $70 on a board, but if you already have a WR703 router, this is a great way to experiment.

Thanks [Matt] for the tip.

A Low Cost Arduino FPGA Shield

ardu-fpga

[technolomaniac] is kicking butt over at Hackaday Projects. He’s creating a low cost Arduino based FPGA shield. We’ve seen this pairing before, but never with a bill of materials in the $25 to $30 range. [technolomaniac's] FPGA of choice is a Xilinx Spartan 6. He’s also including SDRAM, as well as an SPI Flash for configuration. Even though the Spartan 6 LX9 is a relatively small FPGA, it can pack enough punch that the Arduino almost becomes a peripheral. The main interconnect between the two will be the Arduino’s ability to program the Spartan via SPI. Thanks to the shared I/O pins though, the sky is the limit for parallel workflow.

[technolomaniac] spent quite a bit of time on his decoupling schematic. Even on a relatively small FPGA power decoupling is a big issue, especially when high speed signals come into play. Thankfully Xilinx provides guides for this task. We have to mention the two excellent videos [technolomaniac] created to explain his design. Documenting a project doesn’t have to be hours of endless writing. Sometimes it’s just easier to run a screen capture utility and click record. As of this writing, the schematic has just been overhauled, and [technolomaniac] is looking for feedback before he enters the all important layout stage. The design is up on his github repository in Altium format. Due to its high cost, Altium isn’t our first pick for Open Hardware designs. There are free viewers available, but [technolomaniac] makes it simple by putting up his schematic in PDF format (PDF link). Why not head over to projects and help him out?

[Read more...]