66% or better

3D Magnetometer mouse in processing

FFB4SV5G0SD7J7G_MEDIUM

[etgalim] works in Solidworks extensively and wanted a more intuitive way of rotating objects onscreen. To do this, he created a mouse that responds to rotation. He put a 3D compass module inside an old mouse and wired it up to an Arduino. The Arduino then relays the I2C sensor data to the computer. So far, he has a Processing script that uses the mouse to rotate a cube, but eventually he wants to write a Solidworks plugin. It’s a bit shaky, and we think it would be a bit smoother (and cheaper) if he used gyros like the jedipad. Video after the jump.

[Read more...]

Barcode scanner in Processing

barcode_sc

Reader [Nikolaus] decided that instead of using an existing image based bar code decoder, he would write his own. Using the Processing language he created a scanner that parsed the black and white pattern when a bar code was centered on the image. His code then parsed that data and compared it with the initializing character to provide a reference. Currently his scanner supports three character sets of the Code 128 encoding, and provided his complete code so that others could add as they see fit. He admits that the code is a bit messy due to the lengthy character tables, but very straight forward.

Remote image processing in JavaScript

[Tom] wrote in to tell us about his JavaScript project for motion detection. It ties together two ideas we’ve talked about recently. The first is doing image processing in-browser using Canvas(), which we’ve seen employed in captcha breaking. The second is offloading heavy processing to browsers, which we saw recently in the MapReduce implementation. [Tom] is using JavaScript to compare consecutive images to determine if there’s any motion. He did this as part of MJPG-Streamer, a program for streaming images from webcams. It can run on very limited hardware, but image processing can be very intensive. Doing the image processing in-browser makes up for this limitation and means that a custom client program doesn’t have to be written. You can find the code here and a PDF about the proof of concept.

Laughing Man in Processing

laughing_man

The Laughing Man is the antagonist from the anime series Ghost in the Shell: Stand Alone Complex. During each of his public appearances in the series he manages to hack all video feeds/cyborg eyes in the vicinity to obscure his face with the logo above.

[Ben Kurtz] had been watching the series recently and realized he could put together a similar effect using Processing. The interesting bit, and what makes this more fun than a simple demo, is that he’s using the OpenCV library. OpenCV is a open source computer vision library. [Ben] uses it to handle the facial recognition in Processing and then apply the image.

It’s only 100 lines and we wonder what other fun tricks could be employed. Here’s a Hack a Day skull you can swap in for the logo.

[thanks dakami]

Processing 1.0

Processing, the open source programming language designed for artists and other creative types, finally went 1.0. Processing inspired numerous outpourings of creativity and beauty, from interactive art installations to sound sculptures. Improvements to Processing include OpenGL anti-aliasing, an extensible Tools menu, and the XML library included by default. You can read up on the changes or download Processing and start playing with it yourself.

[via Create Digital Motion]

Wiimote head tracking in Processing


[Manuel] has been playing around with [Johnny Lee]‘s Wiimote head tracking code. He’s posted a preliminary port outlining the code in the Processing environment. It relies on darwiinremoteOSC so you won’t see this outside of OSX, but it should help you out if you’re trying to do this is in Processing on another platform.

[via Create Digital Motion]

[photo: nicolasnova]

THP Entry: A Digital Large Format Camera

Click to embiggen. It's seriously worth it.

Click to embiggen. It’s seriously worth it.

After 20 or so years of development, digital cameras may soon be superior to film in almost every way, but there are a few niches where film cameras reign supreme. Large format cameras, for example, are able to produce amazing images, but short of renting one for thousands of dollars a day, you’ll probably never get your hands on one. For his entry to The Hackaday Prize, [Jimmy.c..alzen] decided to build digital large format camera, using an interesting device you don’t see used very often these days – a linear CCD.

[Jimmy]‘s camera is built around a TAOS TS1412S, a linear CCD that is able to capture a line of light 1536 pixels across. The analog values are clocked out from this chip in sequence, going straight into an Arduino Due for processing, saving, and displaying on a small screen.

Inside the camera, the sensor is on a pair of rails and driven across the focal plane with the help of a stepper motor. The effect is something like the flatbed scanner to camera conversions we’ve seen in the past, but [Jimmy] is able to adjust the exposure of the camera simply by changing the integration time of the sensor. He can also change the delay between scanning each column of pixels, making for some really cool long-exposure photography techniques; one side of an image could be captured at noon, while the other side could be from a beautiful sunset. That’s something you just can’t do otherwise without significant digital manipulation outside the camera.


SpaceWrencherThe project featured in this post is an entry in The Hackaday Prize. Build something awesome and win a trip to space or hundreds of other prizes.