Closing in on Nixie cuff links

It’s not Nixie cuff links yet, but we’re seeing a lot of potential for a few very classy accoutrements with [thouton]‘s Nixie tube necklace.

The build was inspired by this much clunkier necklace that found its way onto the MAKE blog. Unlike the previous necklace, [thouton] used a much smaller Mullard ZM1021 indicator bulb. Instead of the normal 0-9 digits in a Nixie, this tube displays only A V Ω + - % and ~, betraying its pedigree as part of the display from an ancient multimeter.

To power the bulb, [thouton] is using a single AA battery and a boost converter salvaged from a camera flash unit. All the circuitry is on a little piece of perfboard encased in a handsome aluminum tube. Power is delivered through two terminals with a bit of audio cable standing in as the chain of the necklace. We suppose this could be re-engineered to use a coin cell battery; although a coin cell doesn’t offer as many amp hours as a AA cell, [thouton] is confident the AA will last for a few days. A coin cell would be more than enough for a night on the town, though.

Edge-lit Nixie tube is sheer brilliance

It’s not often that we see something so brilliantly simple we’re left reaching for our checkbooks while wondering exactly how we never though of that before. [Jürgen]‘s edge-lit Nixie display is one of those builds.

[Jürgen]‘s modern take on a Nixie display uses ten laser-engraved pieces of acrylic to emulate a Nixie numerical display. In the base of the display are 10 LEDs, each shining onto the side of a piece of acrylic. When an LED lights up, you can clearly see the corresponding number. Edge-lit displays are old hat, but talking about the possibility of an RGB Nixie-style display is really neat.

The build was inspired by an antique edge-lit display that performed the same function as the ever-popular Nixie tube with 10 miniature light bulbs and light pipes. The ancient edge-lit displays came in a rectangular enclosure that worked very well for panel-mount uses, but [Jürgen] stuck to a more traditional cylindrical orientation. All we want to know is when a manufacturer in China is going to start building these. Check out the demo of the edge-lit Nixie after the break.

[Read more...]

Nixie clock exhibits well fabricated metal bezel

[Matt Evans] achieves a total win with his Nixie clock. Not only does he have the benefit of the retro display hardware, but he really catches our eye with the enclosure he built for it.

The project had its genesis when he came across a set of the Nixie Tubes in a surplus store. This was back in 2007, and with parts in hand he built the high-voltage driver circuit and a control board. The thing kept time, but was housed in a temporary case that was a bit rough looking. There it sat, waiting to become the focus of his attention once again.

When it did finally come time to build a proper case [Matt] started with a small sheet of recycled copper. He made the cutouts and bends by hand. He mentions that it’s a little uneven; maybe, but we don’t think it detracts from the design. Some black screen (like would be used on a porch door) covers the openings, giving texture and contrast to the facade.

We love the look, and the ATmega48 with a clock crystal for the RTC functions should make this a reliable time source.

Millivolt meter Nixie clock

Surprisingly, up until a year ago, [Jimmy] hadn’t seen a Nixie tube. Awful we know, but he has come around to the beauty of glowing numbers in a tube. He recently found an old millivolt meter in a junk pile that used Nixie tubes. The wondrous orange glow beckoned him, so [Jimmy] decided to build a clock.

Just about all of the Nixie clocks we’ve seen (including non-clock builds) rely on building a controller for the Nixie tubes. The controllers range from Nixie Arduino shields to the good ‘ol 74141 IC. [Jimmy] realized he didn’t need to bother with controlling the tubes in an already functional millivolt meter – he only needed to send the right voltage.

For his clock build, [Jimmy] used an Arduino to output a voltage through a bunch of resistor dividers. For example, if the time is 12:30, the output voltage will be 12.30mV. Using this technique, the values for the needed resistors don’t exist, so a little bit of PWM means the Arduino keeps fairly good time.

There’s one added bonus of [Jimmy]‘s clock – because the voltage varies around 0.01mV, the finished project acts like a digital version of Lord Vetinari’s clock. It may not be perfect, but at least a nice piece of equipment was saved from the trash.

Using nixie tubes as robot eyes

[radmeck] on the forums came up with a great use for Nixie tubes. Instead of using Nixies for clocks, or indicating values, he used them as robot eyes.

He used the arduNIX Arduino-powered Nixie tube driver to power the tubes. [radmeck] was very impressed with the arduNIX kit. The kit is able to drive eight Nixies or eighty neon bulbs, but there’s no word from [radmeck] on additional Nixies or neons in his build. The eventual goal of the project is to rebuild the Omnibot while adding more servos and motors. The EZ-B robot controller will be used to control the robot, something we’ve seen before.

[radmeck]‘s Omnibot looks a lot better after the retr0bright bath, and with Nixie eyes its even more adorable. While the Omnibot didn’t live up to the original promise of impressing your girlfriend, Nixie tube eyes will give you some blog cred.

Check out the video of the much-improved Omnibot after the break.

[Read more...]

Magic: The Gathering nixie life counter

Someone sent in a tip that pointed us to this Magic: The Gathering forum thread where a user named [DistortedDesigns] made a life counter for Magic: The Gathering out of Nixie tubes. While there’s not many details for this build, it’s just too cool to be forgotten in a single forum.

The project began by etching some plexiglas. There’s some earlier examples of [DistortedDesigns]‘ work that look very professional. The electronic are extremely simple – the 25 LEDs run off of 2 AA cells, and the nixies run off of 2 C cells. We were wondering when [DistortedDesigns] would drop the A-bomb, but it looks like this build doesn’t use a microcontroller.

[Read more...]

Nixie tube conference badge


Maker [Jeffrey Gough] was recently asked to construct a set of badges for the TROOPERS11 IT security conference held in Heidelberg last month. The badges were to reflect the overall theme of this year’s conference – personal progression, education, and striving to become better IT security professionals. To do this, he designed a badge that tracked a conference attendee’s participation in various activities.

The badge sports a center-mounted nixie tube that is used to show the attendee’s score. It is worn around the neck using a Cat-5 cable that acts as a LANyard as well serves as a power switch for the badge. The badge can be plugged in to a special programmer used by conference organizers, which updates the attendee’s score after completing each activity.

[Jeffrey] made sure to add all sorts of extra goodies to the badge, including a capacitive touch button that displays a secret message via the nixie, as well as plenty of hole and SMT pads so that hackers could get their game on.

Overall, the reception of the badge was extremely positive. All of the conference attendees had lots of fun exploiting the badges as well as adding components such as LEDs and speakers.

Continue reading to check out a quick demonstration video [Jeffrey] put together, highlighting the badge’s features.

[Read more...]