Organic Fibonacci Clock Is All About The Spiral

Whether you’re a fan of compelling Tool songs, or merely appreciate mathematical beauty, you might be into the spirals defined by the Fibonacci sequence. [RuddK5] used the Fibonacci curve as the inspiration for this fun clock build.

The intention of the clock is not to display the exact time, but to give a more organic feel of time, via a rough representation of minutes and hours. A strip of addressable LEDs is charged with display duty. The description is vague, but it appears that the 24 LEDs light up over time to show the amount of the day that has already passed by. The LEDs are wound up in the shape of a Fibonacci spiral with the help of a 3D printed case, and is run via a Wemos D1 microcontroller board.

It’s a fun build, and one that we can imagine would scale beautifully into a larger wall-hanging clock design if so desired. It at once could display the time, without making it immediately obvious, gradually shifting the lighting display as the day goes on.

We’ve seen other clocks rely on the mathematics of Fibonacci before, too. If you’ve cooked up your own fun clock build, don’t hesitate to let us know!

3D Printed Wind Turbine Has All The Features, Just Smaller

For anyone with even the slightest bit of engineering interest, wind turbines are hard to resist. Everything about them is just so awesome, in the literal sense of the word — the size of the blades, the height of the towers, the mechanical guts that keep them pointed into the wind. And as if one turbine isn’t enough, consider the engineering implications of planting a couple of hundred of these giants in a field and getting them to operate as a unit. Simply amazing.

Unfortunately, the thing that makes wind turbines so cool — their enormity — can make them difficult to wrap your head around. To fix that, [3DprintedLife] built a working miniature wind turbine that goes a bit beyond most designs of a similar size. The big difference here is variable pitch blades, a feature the big turbines rely on to keep their output maximized over a broad range of wind conditions. The mechanism here is clever — the base of each blade rides in a bearing and has a small cap head screw that rides in a hole in a triangular swash block in the center of the hub. A small gear motor and lead screw move the block back and forth along the hub’s axis, which changes the collective pitch of the blades.

Other details of full-sized wind turbines are replicated here too, like the powered nacelle rotation and the full suite of wind speed and direction sensors. The generator is a NEMA 17 stepper; the output is a bit too anemic to actually power the turbine’s controller, but that could be fixed with gearing changes. Still, all the controls worked as planned, and there’s room for improvement, so we’ll score this a win overall.

Looking for a little more on full-size wind turbines? You’re in luck — our own [Bryan Cockfield] shared his insights into how wind farm engineers deal with ice and cold.

Continue reading “3D Printed Wind Turbine Has All The Features, Just Smaller”

Lunar Rover Is No Toy

When you think of Tomy — more properly, Takara Tomy — you think of toys and models from Japan. After all, they have made models and toys as iconic as Transformers, Thomas, Jenga, Boggle, and Furby. They also made figures associated with Thunderbirds and Tron, two favorites in our circles. However, their recent design for SORA-Q is no toy. It is a tiny lunar rover designed at the request of JAXA, the Japanese space agency. The New Yorker recently posted about how this little rover came about.

The SORA-Q looks a bit like a modern Star Wars drone or — if it could fly — a training drone from some of the older movies. The rover caught a lift from a SpaceX Falcon 9 towards the moon with the Hakuto-R M1 lander. Another SORA-Q is scheduled to touch down later this year.

Continue reading “Lunar Rover Is No Toy”

NASA Help Wanted: Telescope Optional

If you’ve ever wanted to work for NASA, here’s your chance. Well, don’t expect a paycheck or any benefits, but the Agency is looking for volunteers to help process the huge amount of exoplanet data with their Exoplanet Watch program. If you have a telescope, you can even contribute data to the project. But if your telescope is in the back closet, you can process data they’ve collected over the years.

You might think the only way to contribute with a telescope is to have a mini-observatory in your backyard, but that’s not the case. According to NASA, even a six-inch telescope can detect hundreds of exoplanet transits using their software. You might not get paid, but the program’s policy requires that the first paper to use work done by program volunteers will receive co-author credit on the paper. Not too shabby!

Continue reading “NASA Help Wanted: Telescope Optional”

Building A Homemade Ambient Pressure Submarine

About two years ago, [Hyperspace Pirate] set to work on building his own two-seater submarine, because who doesn’t want to have a submarine when you have just moved to Florida? In the linked video (also attached below), he describes the reasoning behind the submarine design. Rather than going with a fully sealed submarine with ambient pressure inside and a hull that resists the crushing forces from the water, he opted to go for a semi-wet ambient pressure design.

What this essentially entails is a fancy equivalent of an old-school diving bell: much as the name suggests, these are sealed except for the bottom, which allows for water to enter and thus equalize the pressure. Although this has the distinct disadvantage of being not dry inside (hence the semi-wet), it does mean that going for a dive is as easy as letting the water in via the bottom hole, and to resurface only a small amount of air injected into two ballast tanks and a pump are all that are required.

So far this submarine has survived a few test runs, which uncovered a number of issues, but diving and resurfacing seems to be going pretty smoothly now, which is definitely a massive plus with a submarine.

(Thanks to [Drew] for the tip!)

Continue reading “Building A Homemade Ambient Pressure Submarine”

Dead Washer Lives Again With ATTiny

We aren’t saying that appliances are a scam, but we have noticed that when your appliances fail, there’s a good chance it will be some part you can no longer get from the appliance maker. Or in some cases, it’s a garden-variety part that should cost $2, but has been marked up to $40. When [Balakrishnan] had a failure of the timer control board for a Whirlpool washing machine, it was time to reverse engineer the board and replace it with a small microcontroller.

Of course, this kind of hack is one of those that won’t help you unless you need exactly that timer board. However, the process is generally applicable. Luckily, the motherboard chip was documented and the timer control board used a simple ATmega88, so it was easy to see that the devices were communicating via I2C.

Reading the I2C  bus is easy with a logic analyzer, and this revealed the faulty device’s I2C address. The board that failed was only for display, so a simple program that does nothing other than accept I2C data put the washer in working order. Once it was working with an Arduino, an ATTiny45 did the work with a lot less space and cost.

If you don’t want to reverse engineer the washing machine, you could just replace all the controls. That even works if the old washer wasn’t electronic to start.

Walk-Bot Is A Navigation Device For The Vision-Impaired

For the vision impaired, there are a wide variety of tools and techniques used to navigate around in the real world. Walk-bot is a device that aims to help with this task, using ultrasound to provide a greater sense of obstacles in one’s surroundings.

Is trigonometry the most useful high school maths out there? There’s an argument that says yes.

Created by [Nilay Roy Choudhury], the device is intended to be worn on the waist, and features two sets of ultrasonic sensors. One set is aimed straight ahead, while the other points upwards at an angle of 45 degrees. An infrared sensor then points downward at an angle of 45 degrees, aimed at the ground.

The distance readings from these sensors are then collated by a microcontroller, which uses trigonometry to determine the user’s actual distance to the object. When objects are closer than a given threshold, the device provides feedback to the user via a buzzer and a vibration motor. The combination of three sensors looking out at different angles helps capture a variety of obstacles, whether they be at head, chest, or knee height.

It’s unlikely that a complex electronic device would serve as a direct replacement for solutions like the tried-and-tested cane. However, that’s not to say there isn’t value in such tools, particularly when properly tested and designed to suit user’s needs.

We’ve seen some great projects regarding visual impairment before, like this rig that allows users to fly in a simulator. If you’ve been working on your own accessibility tools, don’t hesitate to drop us a line!