Hackaday Prize Entry: Disaster Recovery WiFi

The Meshpoint project originated in Croatia during the 2015 Syrian refugee crisis, when [Valent Turkovic] and other volunteers noticed that first responders, including NGOs like Greenpeace and the Red Cross, often struggled to set up communications in the field. They came to the conclusion that they couldn’t rely on the normal communications infrastructure because it was either damaged or overloaded.

The solution is a net of open source, autonomous WiFi mesh routers, scalable from a single team to serving thousands of people. Responders who won’t have time for a difficult login process, should find setup as easy as signing in to a social media site.

The physical nodes would consist of a router robust for up to 150 connections, all run by an ESP8266 and protected by a weatherproof enclosure. They would feature 6-8 hour battery lives with recharging via solar/wind, AC from wall current or generators, or simply DC car batteries.

You can learn more about the project or download their code from GitHub.

Hackaday Prize Entry: BeagleLogic

A few years ago, [Kumar] created the BeagleLogic, a 14-channel, 100 MSPS logic analyzer for the BeagleBone as an entry for the Hackaday Prize. This is a fantastic tool that takes advantage of the PRUs in the BeagleBone to give anyone with a BeagleBone a very capable logic analyzer for not much cash.

This year, [Kumar] is back at it again. He’s improving the BeagleLogic with a BeagleBone on a chip. This is the BeagleLogic Standalone, a 16-channel logic analyzer at 100 MSPS using a single chip.

Like the BeagleLogic from a few years ago, [Kumar] is relying on those fancy PRUs in the BeagleBone that make reading GPIOs and blinking LEDs so easy and fast. Unlike the BeagleLogic shield/cape/whatever, the BeagleLogic Standalone uses the Octavo Systems’ OSD3358 — the BeagleBone on a chip — for the hardware. This incorporates everything in a BeagleBone into a single package, making for a compact unit that still has all the capabilities of the bigger BeagleLogic.

On board this pocket-sized logic analyzer is the OSD3358 itself, the logic analyzer frontend, a gigabit Ethernet port, USB, an SPI Flash, SD card slot and eMMC, and an RTC. An expansion header breaks out a UART, I2C, SPI, two PWM outputs, 6 GPIOs, and a clock to a PRU for experimental synchronous captures.

With a web-based frontend for this Logic Analyzer, this looks like it’ll be a fantastic tool for any hardware hacker, and something that should be reasonably inexpensive.

Hackaday Prize Entry: Dongle For A Headless Pi

Mass production means that there’s a lot of great hardware out there for dirt cheap. But it also means that the manufacturer isn’t going to spend years working on the firmware to squeeze every last feature out of it. Nope, that’s up to us.

[deqing] took a Bluetooth Low Energy / USB dongle and re-vamped the firmware to turn it into a remote keyboard and mouse, and then wrote a phone app to control it. The result? Plug the USB dongle in, and the computer thinks it sees a keyboard and mouse. Connect the phone via BLE, and you’re typing — even if you don’t have your trusty Model F by your side.

[Deqing] points out that ergonomics and latency will make you hate using this in the long term, but it’s just meant to work until you’ve got SSH up and running on that headless single-board Linux thing. If you’ve ever worked with the USB or BLE specifications, you can appreciate that there’s a bit of work behind the scenes in making everything plug and play, and the web-based interface is admirably slick.

Kudos, [deqing]!

Best Product Entry: Emulating Memory

For this year’s Hackaday Prize, we’re giving everyone the opportunity to be a hardware startup. This is the Best Product portion of the Hackaday Prize, a contest that will award $30,000 and a residency in our Design Lab to the best hardware project that is also a product.

Imagine all the memory chips in all the landfills in the world. What if we could easily recover those hosed motherboards and swap out ROM files on malware-damaged chips. That’s the promise of [Blecky]’s EEPROM/Flash Emulator project on Hackaday.io. This project seeks to be the ultimate memory interface, emulating SPI-interface EEPROM or Flash memory chipsets with ease. It can also be used as a security device, checking the BIOS for untoward changes.

The EEEmu packs an Atmel SAM4S Cortex-M4 processor-based microcontroller, an SD card reader, a micro USB for reprogramming, boost converter, voltage regulator, and includes additional 3.3V GPIO/I2C ports, all on a wee 51.5x20mm circuit board. Version 2 is slated to include more features to facilitate use as a normal micro controller: more GPIO pins, USB voltage monitoring, and high-Z control for SPI output.

EEEmu is completely open source, with [Blecky] sharing his code on GitHub and even has created an EEEmu Fritzing part, also found in his repository.

Monitor Your City’s Air Quality

[Radu Motisan]’s entry in the 2017 Hackaday Prize is a series of IoT Air Quality monitors, the City Air Quality project. According to [Radu], air pollution is the single largest environmental cause of premature death in urban Europe and transport is the main source. [Radu] has created a unit that can be deployed throughout a city and has sensors on it to report on the air quality.

The hardware has a laser light scattering sensor for particulate matter and 4 electromechanical sensors for carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone (these sense the six parameters that are recognized as having significant health impact by multiple countries.) These sensors have2-yearear lifespan, so they are installed in sockets for easy replacement, and if needed, you can swap to different sensors to detect different things. The PCBs for the hardware are separated into a WiFi version and a LoRaWAN version and the software runs on an ATMega328 – the PCB has the standard six-pin ISP connection for programming.

The data collected is sent to a server where it is adjusted based on the unit’s calibration parameters and stored in a database per sensor. This makes servicing the sensors at the end of their life easier as all that’s required is replacing the sensors in the unit and changing the calibration parameters stored for that unit, the software changes are required. The server offers the data via a RESTful API so that building dashboards with the stats and charts become easy.

[Radu] used an off the shelf module as the first prototype and attached it to a car while driving around. He used this to test out the plan and work on the server. He then proceeded to designing the PCB hardware and the enclosure for the final unit. This work is an extension of [Radu]’s previous work, spotlit here in the 2015 Hackaday Prize, but also check out this project to put air quality sensors in the classroom.

Continue reading “Monitor Your City’s Air Quality”

Hackaday Prize Entry: Health-Monitoring Flexible Smartwatch

[Nick Ames]’s Flexible Smartwatch project aims to create an Open Source smartwatch made out of a flexible, capacitive e-ink touchscreen that uses the whole surface of the band. This wraparound smartwatch displays information from the on-board pulse and blood oximetry sensor as well as the accelerometer and magnetometer, giving you a clear idea of how stressed you are about your upcoming meeting.

The display [Nick] went with is called an electrophoretic display (EPD). It’s 400×200-pixels at 115ppi with a 4″ diagonal, and can bend around a wrist. It can draw shapes in 16 shades of gray with a refresh time of under a second or B&W with a faster refresh.

The smartwatch described in [Nick]’s project would be 2.5mm thick — certainly thin enough to fit under a sleeve. We suspect that success of the form factor may hinge on [Nick]’s success in making it not look like a hospital wristband. Although this gives us the thought that a biofeedback-sensing smart wristband is probably the future of hospital stays.

Hackaday Prize Entry: Open Narrowband RF Transceiver

We have so many options when we wish to add wireless control to our devices, as technology has delivered a stream of inexpensive devices and breakout boards for our experimentation. A few dollars will secure you all your wireless needs, it seems almost whatever your chosen frequency or protocol. There is a problem with this boundless availability though, they can often be rather opaque and leave their users only with what their onboard firmware chooses to present.

The Open Narrowband RF Transceiver from [Samuel Žák] promises deliver something more useful to the experimenter: an RF transceiver for the 868 or 915MHz allocations with full control over all transmission parameters. Transmission characteristics such as frequency, bandwidth, and deviation can be adjusted, and the modulation and encoding schemes can also be brought under full control. Where a conventional module might simply offer on-off keying or frequency shift keying, this module can be programmed to deliver any modulation scheme its chipset is capable of. Spread-spectrum? No problem!

Onboard, the device uses the TI CC1120 transceiver chip, paired with the CC1190 front end and range extender. Overseeing it all is an ST Microelectronics STM32F051 microcontroller, which as you might expect is fully accessible to programmers. Interfaces are either USB, through an FTDI serial chip, or directly via a serial port.

There are a host of transceiver chips on the market which just beg to be exploited, so it is very good indeed to see a board like this one. It’s worth noting though that the CC1120 has a much wider frequency band than that of the CC1190, and with a different front end and PA circuitry, this could cover other allocations including some amateur bands.