Smartphone-based Robotic Rover Project goes Open Source

[Aldric Négrier] wrote in to let us know that his DriveMyPhone project has been open sourced. The project is a part telepresence, part remote-controlled vehicle, part robotic rover concept on which he says “I spent more time […] than I should have.” He has shared not just the CAD files, but every detail including tips on assembly. He admits that maybe a robotic chassis for a smartphone might not seem like a particularly new idea today, but it was “an idea with more potential” back in 2010 when he first started.

The chassis is made to cradle a smartphone. Fire up your favorite videoconferencing software and you have a way to see where you’re going as well as hear (and speak to) your surroundings. Bluetooth communications between the phone and the chassis provides wireless control. That being said, this unit is clearly designed to be able to deal with far more challenging terrain than the average office environment, and has been designed to not only be attractive, but to be as accessible and open to repurposing and modification as possible.

Continue reading “Smartphone-based Robotic Rover Project goes Open Source”

Improved Digital Caliper Interfacing, Including 3D Printed Connector

[MakinStuff] wrote in to let us know about a project he did for new and improved interfacing to the ubiquitous cheap Chinese digital calipers. Interfacing to this common caliper model is well-trod ground, but his project puts everything about interfacing and reading the data in one place along with some improvements: a 3D printed connector that makes mating to the pads much more stable and reliable, 3d-printed-plug-for-digital-calipersa simple interface circuit for translating the logic levels, and an interrupt-driven sample Arduino sketch to read the data. Making the sketch interrupt-driven means the Arduino never sits and waits for input from the calipers, making it easier have the Arduino do other meaningful work at the same time, ultimately making it easier to incorporate into other projects.

The connector has spaces to insert bare wires to use as contacts for the exposed pads inside the calipers. Add a little hot glue and heat shrink, and you’ll never have to fiddle with a hacked-together connection again.

This common caliper model has been hacked and re-purposed in interesting ways. We’ve seen them used as a Digital Read Out (DRO) on a lathe as well as being given the ability to wirelessly log their data over Bluetooth.

Continue reading “Improved Digital Caliper Interfacing, Including 3D Printed Connector”

DNA Extraction With A 3D-Printed Centrifuge

[F.Lab] is really worried that we are going to prepare a DNA sample from saliva, dish soap, and rubbing alcohol in their 3D-printed centrifuge and then drink it like a shot. Perhaps they have learned from an horrific experience, perhaps biologists have different dietary requirements. Either way, their centrifuge is really cool. Just don’t drink the result. (Ed note: it’s the rubbing alcohol.)

The centrifuge was designed in Sketch-Up and then 3D printed. They note to take extra care to get high quality 3D prints so that the rotor isn’t out of balance. To get the high speeds needed for the extraction, they use a brushless motor from a quadcopter. This is combined with an Arduino and an ESC. There are full assembly instructions on Thingiverse.

[F.Lab] has some other DIY lab equipment designs, such as this magnetic stirrer. Which we assume you could use to make a shot if you wanted to. However, it’s probably not a good idea to mix lab supplies and food surfaces. Video after the break.

Continue reading “DNA Extraction With A 3D-Printed Centrifuge”

Bullet-time Video Effect by Throwing Your Phone Around

Ski areas are setting formal policies for drones left and right, but what happens when your drone isn’t a drone but is instead a tethered iPhone with wings swinging around you like a ball-and-chain flail as you careen down a mountain? [nicvuignier] decided to explore the possibility of capturing bullet-time video of his ski runs by essentially swinging his phone around him on a tether. The phone is attached to a winged carrier of his own design, 3D printed in PLA.

One would think this would likely result in all kinds of disaster, but we haven’t seen the outtakes yet, and the making-of video has an interesting perspective on each of the challenges he encountered in perfecting the carrier, ranging from keeping it stable and upright, to reducing the motion sickness with the spinning perspective, and keeping it durable enough to withstand the harsh environment and protect the phone.

He has open sourced the design, which works for either iPhone or GoPro models, or it is available for preorder if you are worried about catastrophic delamination of your 3D printed model resulting in much more bullet-like projectile motion.

Continue reading “Bullet-time Video Effect by Throwing Your Phone Around”

Cute, Hackable, 3D Printable Robot Family

We first saw the robot Zowi (top row in the banner photo) at Make Munich a few weeks ago, and we were very impressed by how much interesting motion they were getting out of the ‘bot for only using four servo motors. The combination of big feet, strong ankle joints, and clever programming let the cute little bot stand on one leg, do a moonwalk, and even hop. (See the video, below the break.) We knew it was for sale. What we didn’t know is that it was entirely open source.

[Javier Isabel], the inventor, is very good at giving credit where it’s due, and that’s a great thing because his ‘bot is basically an improved BOB robot. That said, you really need to see this thing moving to know what a difference Zowi’s significantly stronger servos and clever programming can make.

But that’s not all! Since everything about Zowi is open, and up on GitHub you can not only 3D print one of your own, but you can easily modify the attractively-boxy case. And a handful of people have taken [Javier] up on the offer, and submitted their modifications back as pull requests. So if you’d rather something mildly more humanoid, and are willing to add a couple more servos, there’s a good basis for your explorations ready to go.

We really like the idea of collaborative toy-robot design, and from what we’ve seen the basic Zowi platform is a winner. Check it out and see if you’re not inspired to add your own personal touch to the design. If you do, be sure to contribute back for others to see!

Thanks [Nils Hitze] for the tip!

Continue reading “Cute, Hackable, 3D Printable Robot Family”

Powerful Crossbow is Almost Entirely 3D Printed

As it turns out, it’s not feasible to print an entire crossbow yet. But [Dan]’s crossbow build does a good job of leveraging what a 3D printer is good at. Most of the printed parts reside in the crossbow’s trigger group, and the diagrams in the write-up clearly show how the trigger, sear and safety all interact. Particularly nice is the automatic nature of the safety, which is engaged by drawing back the string. We also like the printed spring that keeps the quarrel in place on the bridle, and the Picatinny rail for mounting a scope. Non-printed parts include the aluminum tubes used in the stocks, and the bow itself, a composite design with fiberglass rods inside PVC pipe. The video below shows the crossbow in action, and it looks pretty powerful.

Actually, we’ll partially retract our earlier dismissal of entirely 3D-printed crossbows, but [Dan]’s version is a lot more practical and useful than this model. And for a more traditional crossbow design, check out this entirely hand-made crossbow.

Continue reading “Powerful Crossbow is Almost Entirely 3D Printed”

3D Printed Tourbillon Clock

3D printed clocks have been done before, but never something like this. It’s a 3D printed clock with a tourbillon, a creative way to drive an escapement developed around the year 1800. Instead of a pendulum, this type of clock uses a rotating cage powered by a spring. It’s commonly found in some very expensive modern watches, but never before has something like this been 3D printed.

3D Printed Clock[Christoph Lamier] designed this tourbillon clock in Autodesk Fusion 360, with 50 printable parts, and a handful of pins, screws, and washers. The most delicate parts – the hairspring, anchor, escapement wheel, and a few gears were printed at 0.06 layer height. Everything else was printed at a much more normal resolution with 0.1mm layer height.

Because nearly the entire clock is 3D printed, this means the spring is 3D printed as well. This enormous 2 meter-long spiral of printed plastic could not have been printed without altering a few settings on the printer. The setting in question is Cura’s ‘combing’ or the ‘avoid crossing perimeters’ setting. If you don’t disable this setting, the print time increases by 30%, and moving the print head causes the plastic to ooze out over the spring.

There’s a 26-minute long video of the 3D printed tourbillon clock in action that is horrendously boring. It does demonstrate this clock works, though. You can check out the more interesting videos below.

Continue reading “3D Printed Tourbillon Clock”