New 3D Printer M3D Pro Hits Kickstarter

M3D just launched their second 3D printer on Kickstarter. The M3D Pro offers more professional features than its predecessor, the M3D Micro, which is still one of cheapest 3D printers around. Despite the higher price of $499, the campaign reached its $100,000 funding goal within hours.

Continue reading “New 3D Printer M3D Pro Hits Kickstarter”

OpenSurgery Explores the Possibility of DIY Surgery Robots

As the many many warnings at the base of the Open Surgery website clearly state, doing your own surgery is a very bad idea. However, trying to build a surgery robot like Da Vinci to see if it can be done cheaply, is a great one.

For purely academic reasons, [Frank Kolkman] decided to see if one could build a surgery robot for less than an Arab prince spends on their daily commuter vehicle. The answer is, more-or-less, yes. Now, would anyone want to trust their precious insides to a 3D printed robot with dubious precision?  Definitely not.

The end effectors were easily purchased from a chinese seller. Forty bucks will get you a sterile robotic surgery gripper, scissor, or scalpel in neat sterile packaging. The brain of the robot is basically a 3D printer. An Arduino and a RAMPS board are the most economical way to drive a couple steppers.

The initial version of the robot proves that for around five grand it’s entirely possible to build a surgery robot. Whether or not it’s legal, safe, usable, etc. Those are all questions for another research project.

Creo Arm Might be the SCARA You’re Looking For

A SCARA (Selective Compliance Assembly Robot Arm) is a type of articulated robot arm first developed in the early ’80s for use in industrial assembly and production applications. All robotics designs have their strengths and their weaknesses, and the SCARA layout was designed to be rigid in the Z axis, while allowing for flexibility in the X and Y axes. This design lends itself well to tasks where quick and flexible horizontal movement is needed, but vertical strength and rigidity is also necessary.

This is in contrast to other designs, such as fully articulated arms (which need to rotate to reach into tight spots) and cartesian overhead-gantry types (like in a CNC mill), which require a lot of rigidity in every axis. SCARA robots are particularly useful for pick-and-place tasks, as well as a wide range of fabrication jobs that aren’t subjected to the stress of side-loading, like plasma cutting or welding. Unfortunately, industrial-quality SCARA arms aren’t exactly cheap or readily available to the hobbyist; but, that might just be changing soon with the Creo Arm.
Continue reading “Creo Arm Might be the SCARA You’re Looking For”

3D Printer Enclosure Is Pleasant On The Eyes And Ears

There’s a lot going on in the 3D printing world. Huge printing beds, unique materials like concrete, and more accessible, inexpensive printers for us regular folk. The only thing that’s often overlooked with these smaller printers is the ruckus that they can make. The sounds of all those motors can get tiresome after a while, which was likely the inspiration for [Fabien]’s home 3D printer workstation. (Google Translate from French)
After acquiring a new printer, [Fabien] needed a place to put it and created his own piece of furniture for it. The stand is made out of spruce and is lined with insulation. He uses a combination of cork, foam, and recycled rubber tile to help with heat, sound, and vibration respectively. Don’t worry, though, he did install a ventilation system for the fumes! After the printer housing is squared away, he place a webcam inside so that the user can monitor the print without disturbing it. Everything, including the current print, is managed with a computer on the top of the cabinet.
Having a good workspace is just as important as having a quality tool, and [Fabien] has certainly accomplished that for his new 3D printer. There have been a lot of good workspace builds over the years, too, including electronics labs in a portable box and this masterpiece workbench. If you’ve ever experienced the frustration of working in an area that wasn’t designed for the task at hand, you’ll easily be able to appreciate any of these custom solutions.

Escalating To CNC Through Proxxon’s Tool Line

Proxxon is a mostly German maker of above average micro tools. They do sell a tiny milling machine in various flavors, from manual to full CNC. [Goran Mahovlić] did not buy that. He did, however, combine their rotary tool accessory catalog into a CNC mill.

Owning tools is dangerous. Once you start, there’s really no way to stop. This is clearly seen with Goran’s CNC machine. At first happiness for him was a small high speed rotary tool. He used it to drill holes in PCBs.

In a predictable turn of events, he discovered drilling tiny holes in PCBs by hand is tedious and ultimately boring. So he purchased the drill press accessory for his rotary tool.

Life was good for a while. He had all the tools he needed, but… wouldn’t it be better if he could position the holes more quickly. He presumably leafed through a now battered and earmarked Proxxon catalog and ordered the XY table.

A realization struck. Pulling a lever and turning knobs! Why! This is work for a robot, not a man! So he pestered his colleague for help and they soon had the contraption under CNC control.

We’d like to say that was the end of it, and that [Goran] was finally happy, but he recently converted his frankenmill to a 3D printer. We’ve seen this before. It won’t be long before he’s cleaning out his garage to begin the restoration and ultimate CNC conversion of an old knee mill. Videos after the break.

Continue reading “Escalating To CNC Through Proxxon’s Tool Line”

A Crash Sensor For Delta 3D Printers

It doesn’t happen that often, but this is the last time that [Lucas] comes back from hours of unattended 3D printing to find a large portion of plastic spaghetti mess and a partly disassembled Kossel. The crash sensor he designed will now safely halt the printer if it detects that something went wrong during the print.

Continue reading “A Crash Sensor For Delta 3D Printers”

Get Subpixel Printing With a DLP 3D Printer

A DLP 3D printer works by shining light into a vat of photosensitive polymer using a Digital Light Processing projector, curing a thin layer of the goo until a solid part has been built up. Generally, the resolution of the print is determined by the resolution of the projector, and by the composition of the polymer itself. But, a technique posted by Autodesk for their Ember DLP 3D Printer could allow you to essentially anti-alias your print, further increasing the effective resolution.

Continue reading “Get Subpixel Printing With a DLP 3D Printer”