The 3D Printed Ukulele

uke

The creator of everyone’s favorite slic3r – [Alessandro Ranellucci] – has been hard at work putting his 3D modeling skills to the test. He’s created a ukulele that’s nearly entirely 3D printed (Google translation). Everything on the uke, short of the strings and tuning pegs came from a MendelMax 3D printer, all without any support material at all.

In the video, [Alessandro] and uke virtuoso [Jontom] show off how this instrument was put together and how good it can sound. The body of the uke is made of two parts, and the neck – three parts including the headstock and fretboard – all fit together with surprisingly traditional methods. A dovetail joint connects the neck to the body and a tongue and groove-like joint holds the headstock to the neck.

[Allessandro] puts the print time of all the uke parts at about 120 under 20 hours and about 20 Euros worth of plastic. As far as ukuleles go, this sounds just as good as the average instrument, but [Jontom] says the action is a little bit high. That’s why files were invented, we guess.

Thanks [iant] for sending this one in.

[Read more...]

3D Printering: Making A Thing With OpenSCAD

printering So you have a 3D printer, and you’re getting tired of printing out octopodes and weighted companion cubes. Good! With a 3D printer, you can make just about anything, but only if you have the modeling experience to turn your design into an .STL file. This 3D Printering column is going on a tangent for a few weeks with some tutorials on how to make a ‘thing’.

This week, we’re starting off with OpenSCAD, a 3D modelling program that’s more like programming than drawing. A lot of useful 3D printable objects – including the parts for a lot of RepRaps – are designed in OpenSCAD, so hopefully by the end of this you’ll be able to design your own parts.

This isn’t meant to be a complete tutorial for OpenSCAD; I’m just demoing SCAD enough to build a simple part. Next week I’ll most likely be designing a part with AutoCAD, but if you have an idea of what software tools I should use as a tutorial to make a part, leave a note in the comments. Check out the 3D Printering guide to making a part with OpenSCAD below.

[Read more...]

The Sub-$500 Deltaprintr

delta

We’ve seen them before, but only now has the Deltaprinter, a very simple and affordable delta printer finally hit Kickstarter.

We saw the Deltaprintr at the World Maker Faire last September where the team showed off their fancy new printer and the very nice prints it can produce. The printer itself is unique in that it eschews printed parts and is instead made of lasercut parts. Instead of belts, each arm of the delta bot is lifted with spectra line, and the entire mechanism is billed as not requiring calibration probably due to the accurate laser cut parts.

On a completely different note, we did notice the rewards for the Deltaprintr Kickstarter are limited. Unlike the gobs of 3D printers on Kickstarter, the Deltaprintr team actually wants to stay on schedule for their shipping dates. That’s an admirable dedication to getting their printer out to backers in a reasonable amount of time.

UK Cops Fear Gun; Pointlessly Seize 3D Printer

quoteGUNquote

Above, according to the greater Manchester Police force, is a 3D printed gun. Well, the rozzers say it’s merely a trigger for a gun. In part they’re actually correct; it is a trigger. For a spring-loaded extruder for the Makerbot Replicator.

For the past few days, the media has been abuzz about the first seizure of a 3D printer (a Makerbot Replicator 2) in Manchester, UK during a raid on suspected gang members. Despite numerous complaints and comments by makers across the UK (thanks, guys), Assistant Chief Constable [Steve Heywood] says, “We need to be absolutely clear that at that this stage, we cannot categorically say we have recovered the component parts for a 3D gun.” The seized 3D printer parts are being sent to ballistics experts to determine if a random piece of plastic can be used in the manufacture of handguns.

Alright kiddos, editorial time. We’re quite aware that the UK is a little…. different… than the US when it comes to firearms regulation. Nevertheless, we feel the need to defend anyone with a 3D printer, in a handy Q&A format:

What this has also done is open up a wider debate about the emerging threat these next generation of weapons might pose.

No, it doesn’t. I don’t know what the British equivalent of a Home Depot is, but I could go to that store, buy some stuff, and build a zip gun. Of course I wouldn’t, because that’s not safe. I could also use a mill and lathe to make a proper gun.

But it’s made of plastic and thus undetectable

Bullets aren’t. Also, I could machine some Delrin. You should really watch In the Line of Fire.

But plans for 3D printed guns are available, making it easy for anyone to fabricate their own gun

Yeah, and Hackaday made one. There were a lot of problems with those 3D printer files. The spring wouldn’t slice, the hammer wouldn’t print, every part was out of scale, and you’d need a lot of experience in 3D modeling and design to turn those ‘plans available on the Internet’ into something you can send to a printer.

Your posting this article further sensationalizes the role of 3D printers in gun control.

You’re right. Here’s what you do: every time someone mentions 3D printed guns, say, “You can build an even better gun with a combo mill/lathe that costs the same as a 3D printer. Equal skill is required to operate both machines. Do you intend to ban the sale or use of machine tools?”

But UK gun laws are weird.

Then print a knife.

via reddit

3D Printed Cutaway Jet Engine Sounds Great

3dJetEngine

Thanks to the wonders of 3D printing, you can now have a 3D printed a jet engine of your very own. Unlike jet engines we’ve seen before, this one comes with no chance of the operator getting burned to a crisp. [Gerry] is a self-proclaimed “broken down motor mechanic” from New Zealand. He’s designed a rather awesome jet engine in 3D Software, and printed it on his UP Plus printer. The engine itself is a cutaway model of a high-bypass turbofan engine. While we’re not sure which make and model of jet engine this cutaway represents, we’re still very impressed.

This isn’t just a static display model – the engine will actually spin up with the help of compressed air.  Separate start and run tubes send air to the turbine and main fain respectively. It even has that distinctive turbofan “buzz saw” sound. While this model is relatively safe, [Gerry] does warn to keep the pressure down, or it could come apart. To that end we’d recommend adding a regulator before the quick disconnect.

The Thingiverse project is a bit light on instructions.  However this situation is remedied by [hacksaw], who posted a pictorial and build log up on pp3d. [Hacksaw] did run into a few problems with the build, but nothing a little bit of superglue couldn’t fix. It may have fewer moving parts, but this definitely puts our old Visible V8 Engine kit to shame.

[Read more...]

Blender CAM – Open Source CAM Software

rel

[Vilem] sent in a tip about a plugin he’s been working on for Blender, called Blender CAM. It allows for exporting directly from Blender to a G-code file. He has been working on it for several months, and releasing regular updates with various tweaks and improvements. While the project isn’t complete, [Vilem] has made some very impressive progress. It currently supports 2D and 3D strategies, various cutter types, simulation of 3D operations, and even automatic bridges.

The image above was made using the plugin, and it shows the level of detail possible. We can’t wait to see the 4 and 5-axis support that he is planning on adding.

A basic tutorial video is embedded after the break. As with anything Blender-related, it isn’t incredibly automatic, but another free tool is definitely a good thing. It looks like [Vilem] is looking for some other developers who could help out. If you have the knowledge, you might consider contributing.

[Read more...]

SCARA Arm Becomes Enormous 3D Printer

SCARA

When you find an old, disused 80s-era SCARA arm in a lab, there’s really not much more you can do than make a giant 3D printer with it.

The last time we saw [Dane]‘s salvaged SCARA arm, he had reconstructed the electronics by building his own servo motor controllers and feedback sensors. There were a few initial test prints, but the new upgrades to this printer make it much more useful, make it look even more kludged together, and made the prints even more accurate.

The largest upgrade to the new machine is an updated heated build plate. The previous plate used six 30W resistors. Good enough, but with two additional 245W membrane heaters, [Dane] can now keep his build plate at a constant 65 degrees C. Keeping such a large area warm requires a heated build chamber, so [Dane] came up with a giant semi-hexagonal box of warm made from aluminum extrusion, laser-cut parts, and acrylic frames.

Compared to earlier prints, the SCARA arm is printing some very nice parts including a battery holder for 40 LiFePO4 cells, and a beautiful propeller for a 3D printed boat. It’s an impressive build, made even more so by the fact this robotic arm was found during a lab cleanup.