Touching Light with Haptic Feedback

Many of us have gone on a stationary romp through some virtual or augmented scape with one of the few headsets out in the wild today. While the experience of viewing a convincing figment of reality is an exciting sensation in itself, [Mark Lee] and [Kevin Wang] are figuring out how to tie other senses into the mix.

The duo from Cornell University have built a mechanical exoskeleton that responds to light with haptic feedback. This means the wearer can touch the sphere of light around a source as if it were a solid object. Photo resistors are mounted like antenna to the tip of each finger, which they filed down around the edges to receive a more  diffused amount of light. When the wearer of the apparatus moves their hand towards a light source, the sensors trigger servo motors mounted on the back of the hand to actuate and retract a series of 3D printed tendons which arch upward and connect to the individual fingers of the wearer. This way as the resistors receive varying amounts of light, they can react independently to simulate physical contours.

One of the goals of the project was to produce a working proof of concept with no more than 100 dollars worth of materials, which [Mark] and [Kevin] achieve with some cash to spare. Their list of parts can be found on their blog along with some more details on the project.

Continue reading “Touching Light with Haptic Feedback”

3D Printing Lock Picks

Over at the 23B hackerspace in Fullerton, CA, [Dano] had an interesting idea. He took a zip tie, and trimmed it to have the same profile of a lock pick. It worked. Not well, mind you, but it worked. After a few uses, the pick disintegrated, but still the concept of picks you can take through a TSA checkpoint was proven.

A few days after this demonstration, [C] realized he had a very fancy Objet 3D printer at work, and thought printing some pics out would be an admirable goal. After taking an image of some picks through the autotracer in Solidworks, [C] had an STL that could be printed on a fancy, high-end 3D printer. The printer ultimately used for these picks was a Objet 30 Pro, with .001″ layer thickness and 600dpi resolution. After receiving the picks, [C] dug out an old lock and went to town. The lock quickly yielded to the pick, and once again the concept of plastic lock picks was proven.

Although the picks worked, there were a few problems: only half the picks were sized appropriately to fit inside a lock. Two picks also broke within 15 minutes, something that won’t happen with traditional metal picks.

Still, once the models are figured out, it’s easy to reproduce them time and time again. A perfect lock pick design is then trivial, and making an injection mold becomes possible. They might still break, but they’ll be far easier to manufacture and simple to replace.

3D Printing Atomic Force Microscopy

[Andres] is working with an Atomic Force Microscope, a device that drags a small needle across a surface to produce an image with incredible resolution. The AFM can produce native .STL files, and when you have that ability, what’s the obvious next step? That’s right. printing atomic force microscope images.

The AFM image above is of a hydrogel, a network of polymers that’s mostly water, but has a huge number of crosslinked polymers. After grabbing the image of a hydrogel from an Agilent 5100 AFM, [Andres] exported the STL, imported it into Blender, and upscaled it and turned it into a printable object.

If you’d like to try out this build but don’t have access to an atomic force microscope, never fear: you can build one for about $1000 from a few pieces of metal, an old CD burner, and a dozen or so consumable AFM probes. Actually, the probes are going to be what sets you back the most, so just do what they did in olden times – smash diamonds together and look through the broken pieces for a tip that’s sufficiently sharp.

3D Printing Without Support

3D printing is getting better every year, a tale told by dozens of Makerbot Cupcakes nailed to the wall in hackerspaces the world over. What was once thought impossible – insane bridging, high levels of repeatability, and extremely well-tuned machines – are now the norm. We’re still printing with supports, and until powder printers make it to garages, we’ll be stuck with that. There’s more than one way to skin a cat, though. It is possible to print complex 3D objects without supports. How? With pre-printed supports, of course.

[Markus] wanted to print the latest comet we’ve landed on, 67P/Churyumov–Gerasimenko. This is a difficult model for any 3D printer: there are two oversized lobes connected by a thin strand of comet. There isn’t a flat space, either, and cutting the model in half and gluing the two printed sides together is certainly not cool enough.

To print this plastic comet without supports, [Markus] first created a mold – a cube with the model of the comet subtracted with a boolean operation. If there’s one problem [Markus] ran into its that no host software will allow you to print an object over the previous print. That would be a nice addition to Slic3r or Repetier Host, and shouldn’t be that hard to implement.

Locking A Beer With A 3D Printer

Have a nice, refreshing IPA sitting in the fridge along with a ton of other beers that have ‘Light’ or ‘Ice’ in their name? Obviously one variety is for guests and the other is for hosts, but how do you make sure the drunkards at your house tell the difference? A beer bottle lock, of course.

Because all beer bottles are pretty much a standard size, [Jon-A-Tron] was able to create a small 3D printed device that fit over the bottle cap. The two pieces are held together with a 4-40 hex screw, and the actual lock comes from a six-pack of luggage padlocks found at the hardware store.

It’s a great device to keep the slackers away from the good stuff, and also adds a neat challenge to anyone that’s cool enough to know basic lock picking. Of course, anyone with a TSA master key can also open the beer lock, but if you’re hosting a party with guest who frequently carry master keys around with them, you’re probably having too good of a time to care.

Nanobots Swim like Scallops in Non-Newtonian Fluids

The idea of using nanobots to treat diseases has been around for years, though it has yet to be realized in any significant manner. Inspired by Purcell’s Scallop theorem, scientists from the Max Planck Institute for Intelligent Systems have created their own version . They designed a “micro-scallop” that could propel itself through non-Newtonian fluids, which is what most biological fluids happen to be.

The scientists decided on constructing a relatively simple robot, one with two rigid “shells” and a flexible connecting hinge. They 3D-printed a negative mold of the structure and filled it with a polydimethylsiloxane (PDMS) solution mixed with fluorescent powder to enable detection. Once cured, the nanobot measured 800 microns wide by 300 microns thick. It’s worth noting that it did not have a motor. Once the mold was complete, two neodymium magnets were glued onto the outside of each shell. When a gradient-free external magnetic field was applied, the magnets make the nanobot’s shells open and close. These reciprocal movements resulted in its net propulsion through non-Newtonian media. The scientists also tested it in glycerol, an example of a Newtonian fluid. Confirming Purcell’s Scallop theorem, the nanobot did not move through the glycerol. They took videos of the nanobot in motion using a stereoscope, a digital camera with a colored-glass filter, and an ultraviolet LED to make the fluorescent nanobot detectable.

The scientists did not indicate any further studies regarding this design. Instead, they hope it will aid future researchers in designing nanobots that can swim through blood vessels and body fluids.  We don’t know how many years it will be before this becomes mainstream medical science, but we know this much: we will never look at scallops the same way again!

Continue reading “Nanobots Swim like Scallops in Non-Newtonian Fluids”

A Tiny Arcade Machine With Tinier Buttons

Building a MAME machine around a Raspberry Pi has been the standard build for years now, and tiny versions of full-sized arcade machines have gone from curiosity to commonplace. [diygizmo] just built one of these tiny arcades, but the fit and finish of this one puts it above all others. There’s a real, miniature joystick in there, along with 3D printed adapters for tact switches to make this one look like a lilliputian version of a full size standup MAME cabinet.

The entire enclosure is 3D printed, and most of the electronics are exactly what you would expect: A Raspberry Pi, 2.5″ LCD, and a battery-powered speaker takes up most of the BOM. Where this build gets interesting is the buttons and joystick: after what we’re sure was a crazy amount of googling, [diygizmo] found something that looks like a normal arcade joystick, only smaller. Unable to find a suitable replacement for arcade buttons, [diygizmo] just printed their own, tucked a tact switch behind the plastic, and wired everything up.

Add in some decals, paint, and the same techniques used to create plastic model miniatures, and you have a perfect representation of a miniature arcade machine.