Adding Copper Wire To A 3D Print

slew

Conductive filaments and printing solder are one thing, but what if you could spice up your 3D prints by embedding wire right inside the filament? That’s what [Bas] is doing, paving the way for printable electronics, PCBs, coils, and odd-shaped antenna.

The general idea of [Bas]’ technique of embedding thin copper wire inside a single layer of a print is to lay the wire down in front of the nozzle, effectively turning bare wire into insulated wire in whatever shape you can imagine. The trick, however, is figuring out how to put wire  down in front of a nozzle. [Baz] accomplished this with a slew ring turned by a stepper motor connected to a 5th axis on the control board.

There are a few things this prototype doesn’t cover – cutting the wire, connecting the wire to components, fine-tuning, and a host of other things that prevent [Bas]’ machine from building real functional circuits. Despite these limitations, the machine could probably fabricate the secondary for a tesla coil right now, something that’s really annoying to make unless you have a lathe.

Video demo below.

Continue reading “Adding Copper Wire To A 3D Print”

Blobless Printing With Velocity Extrusion

velocity

The current crop of 3D printers are technically four-axis machines, with three axes of movement and a fourth for the position of the filament. [Bas] had an entirely different idea – why not link the speed of the extruder to the speed of the nozzle? It turns out this technique gives you more ‘plasticy-looking’ prints and a vast reduction in blobbiness.

[Baz] has been working with LinuxCNC, a BeagleBone Black and the BeBoPr-Bridge cape, and there’s been a lot of development with that system in turning many straight lines into one smooth arc. This led him to adjusting the flow rate of a nozzle while the printer is running, but this is difficult if the extrusion is controlled by position as in a traditional printer setup. A new configuration was in order.

What [Baz] ended up with is a config that calculated the speed of the extruder based on the speed the nozzle is moving over the print surface. This gave him the ability to add live nozzle pressure adjustment, and as a result, a near complete disappearance of the little blobs that appear at the start of each layer.

For a well calibrated machine, it’s only a small difference between the ‘normal’ and ‘velocity’ methods of controlling an extrusion rate. It’s a noticeable difference, though, and one that vastly improves the visual quality of a print.

 

Koenigsegg 3D-Printing for Production Vehicles

Koenigsegg with Printed Parts

We’re not surprised to see a car manufacturer using 3D-printing technology, but we think this may be the first time we’ve heard of 3D-prints going into production vehicles. You’ve likely heard of Christian von Koenigsegg’s cars if you’re a fan of BBC’s Top Gear, where the hypercar screams its way into the leading lap times.

Now it seems the Swedish car manufacturer has integrated 3D printing and scanning into the design process. Christian himself explains the benefits of both for iterative design: they roughed out a chair, adjusting it as they went until it was about the right shape and was comfortable. They then used a laser scanner to bring it into a CAD file, which significantly accelerated the production process. He’s also got some examples of brake pedals printed from ABS—they normally machine them out of aluminum—to test the fits and the feeling. They make adjustments as necessary to the prints, sometimes carving them up by hand, then break out the laser scanner again to capture any modifications, bring it back to CAD, and reprint the model.

Interestingly, they’ve been printing some bits and pieces for production cars out of ABS for a few years. Considering the low volume they are working with, it makes sense. Videos and more info after the jump.

Continue reading “Koenigsegg 3D-Printing for Production Vehicles”

Ask Hackaday: Can The Lix 3D Printing Pen Actually Work?

Introducing Lix, the world’s smallest 3D printing pen that allows you to draw plastic structures in 3D. It’s only been on Kickstarter for a few days now, and already it has garnered close to a million dollars in pledges. An astonishing achievement, especially considering we can prove – with math and physics – that it doesn’t work as advertised. However, we’re wondering if it could work at all, so we’re asking the Hackaday community.

The device is powered through a USB 3 port. In the video, the Lix team is using a MacBook Pro. This has a USB port capable of delivering 900 mA at 5 Volts, or 4.5 Watts. Another 3D printing pen, the 3Doodler, uses a 2A, 12V power adapter, equal to 24 Watts. Considering the 3Doodler works, and they both do the same basic thing, there’s something extremely odd going on here.

Just as a comparison, here’s a wirewound resistor commonly found in the heating element or ‘hot end’ of a 3D printer. It’s a 6.8  Ohm resistor powered at 12 Volts. That’s 21 Watts. Here’s a heater cartridge, also found in quite a few hot ends. It sucks down 40 Watts. Once again, the Lix Kickstarter clearly shows the pen extruding filament using only 4.5 Watts of power. Something is really, really fishy here.

Intuition doesn’t hold a candle to math, so let’s figure out exactly why it won’t work.

Continue reading “Ask Hackaday: Can The Lix 3D Printing Pen Actually Work?”

Dual Color Extruder With A Single Stepper

extruder

Once you have a 3D printer able to build a few objects in a single color, the next logical upgrade is a dual extruder. A dual extruder allows for multiple color prints, and by adding a dissolvable filament, the ability to print object that would otherwise be impossible. Fitting a dual extruder on an existing 3D printer presents a problem: simply by using a second stepper motor, you reduce the print area of your printer significantly. That’s the problem Dglass 3D aims to solve with their extruder. It’s a dual filament extruder that uses only one stepper motor and takes up less space than some other single filament extruders.

This isn’t the first time the guys at Dglass 3D have tried Kickstarting a dual filament extruder; last year we saw a very similar mechanism that used a single stepper motor to feed two filaments. This older model lacked retraction, though, meaning two colored prints would range somewhere between messy, inaccurate, to impossible.

The new extruder uses a servo to ‘latch’ the filament and drive it into the hot end. This means retraction of the filament is possible and from the sample prints with this extruder, the results look pretty good.

Below You’ll see a few video demos of the dual color/retraction extruder printing an object in black and white filaments at the same time. It’s very cool, and with the addition of a dissolvable filament means very complex objects can be printed very easily.

Continue reading “Dual Color Extruder With A Single Stepper”

Hackaday Links: February 9, 2014

hackaday-links-chain

Here’s a quick tip to extend the usefulness of your multimeter. It’s a set of mini test hooks soldered to alligator clips with a short hunk of stranded wire in between. You can buy mini test hooks that go right on the metal probes of your meter, but the weight and bulk of the meter probes and cords sometimes get in the way. This rig allows more flexibility because of that wire.

Staying on the theme of test equipment tips, here’s a simple way to make a Y-connector for logic analyzers. [Thomas] uses a dual-row pin header, shorting each pair of pins so that both rows are connected. When this is plugged into a pin socket it leave two pins for connecting your test equipment and the rest of the project hardware.

After seeing our feature of a 3-wire Character LCD [Chad] wrote in to mention he built a 1-wire version using an ATmega328.

If you’re going to be in Anaheim this week you can stop by the ATX-West expo and see a 3D printer with a 1m x 1m x 0.5m printing area. [Thanks Martin]

Speaking of 3D printers, here’s a big delta robot (seven feet tall) outfitted for alternative material printing. It’s printing a CT scan of ribs and a heart in hot glue. This seems to be a popular material for more artistic uses. We just saw a hexapod which deposits hot glue as it roams.

The weaponized quadcopter post from Tuesday was a controversial one. The really bad part of it was the laser, which strapped to anything is extremely dangerous. But the other hack may have just been poorly executed. Hackaday alum [Jeremy Cook] wrote in to mention that fireworks and quadcopters can be used more responsibly. He strapped a sparkler to his quadro and used it to make light graffiti. You may remember that [Jeremy] wrote an introduction to light graffiti for us back in November.

faBrickation: Combining Lego and 3D Printing

faBrickation

While 3D printing gives you the ability to fabricate completely custom parts, it does have some drawbacks. One issue is the time and cost of printing large volumes. Often these structures are simple, and do not require completely custom design.

This is where the faBrickation system comes in. It allows you to combine 3D printed parts with off the shelf LEGO bricks. The CAD tool that lets you ‘Legofy’ a design. It creates directions on how to assemble the LEGO parts, and exports STL files for the parts to be 3D printed. These custom bricks snap into the LEGO structure.

In their demo, a head mounted display is built in 67 minutes. The same design would have taken over 14 hours to 3D print. As the design is changed, LEGO blocks are added and removed seamlessly.

Unfortunately, the tool doesn’t appear to be open source. It will appear for the ACM CHI Conference on Human Factors in Computing Systems, so hopefully we will see more in the future. Until then, you can watch the demo after the break.

Continue reading “faBrickation: Combining Lego and 3D Printing”