Kinect + Wiper Motor + LEGO = 3D Scanner

[Christopher] from the Bamberg Germany hackerspace, [Backspace], wrote in to tell us about one of the group’s most recent projects. It’s a Kinect-based 3D scanner (translated) that has been made mostly from parts lying around the shop.

There are 2 main components to the hardware-side of this build; the Kinect Stand and the Rotating Platform. The Kinect sits atop a platform made from LEGO pieces. This platform rides up and down an extruded aluminum rail, powered by an old windshield wiper motor.

The Rotating Platform went through a couple of iterations. The first was an un-powered platform supported by 5 roller blade wheels. The lack of automatic rotation didn’t work out so well for scanning so out came another windshield wiper motor which was strapped to an old office chair with the seat replaced by a piece of MDF. This setup may not be the best for the acrophobic, but the scan results speak for themselves.

Continue reading “Kinect + Wiper Motor + LEGO = 3D Scanner”

Hackaday Links: January 19, 2014

hackaday-links-chain

[Nick] wrote in to tell us about his first blog post. He’s showing off a PWM LED driver he build around a 555 timer. This project uses a lot of basics; some 555 experience, PCB etching, and surface mount soldering. We’d like to know more about the blue substrate on his circuit board!

After seeing the BOM spreadsheet with KiCAD integration a couple of weeks back, [Vassilis] sent in a link to his own Excel-based Bill of Materials helper. We’re wondering if anyone has a similar tool that will work with Open Office?

While we’re on the topic of downloadable documents, here’s a reference PDF for all types of DC measurements. The collection is a free offering from Keithley. [Thanks Buddy]

Since you’re brushing up on your knowledge you may also be interested in a free online microcontroller course offered by UT Austin. They’re targeting the Tiva C Launchpad as the dev board for the class.

This website seems to be a little creepy, but the teardrop shaped 3D printed music box which is being shown off is actually rather neat.

Hackaday Alum [Phil Burgess] threw together a point and shoot camera for Adafruit. It’s a Raspberry Pi, camera board, touchscreen display, and USB battery all rubber banded together. The processing power of the RPi is used to add image processing effects which are shown off in the demo video.

We don’t own a DeLorean. If we did, we’d probably follow the lead of Queen’s University Belfast and turn it into and electric vehicle. [Thanks Jake]

The 3D photocopiers are coming. Here’s a hacked together proof-of-concept from [Marcelo Ruiz]. After laser scanning the part is milled from floral foam.

 

Crowdsourcing plastic model kits

laser

Flexiscale, the company that crowdsources and crowdfunds model kits, made a showing at the World Maker Faire. We’ve seen their work before, but this time we got to touch base with [Chris Thorpe] and get a handle on the future of user-requested model kits.

Right now there are over one hundred proposals for what Flexiscale should do next. They’re mostly narrow gauge railroad locomotives and rolling stock, but [Chris] tells me they’re looking to branch out into larger projects including American locomotives as well as planes, ships, and buildings. This is a really, really cool project, and if you’re into models at all, you should at least be aware of what Flexiscale is trying to do.

If you have an idea of what Flexiscale should do next, write up a proposal. I made one for the PRR GG1 electric locomotive, and if enough people support it, [Chris] will scan an engine and make a kit.

3D Printering: Scanning 3D models

The Makerbot Digitizer was announced this week, giving anyone with $1400 the ability to scan small objects and print out a copy on any 3D printer.

Given the vitriol spewed against Makerbot in the Hackaday comments and other forums on the Internet, it should be very obvious the sets of Hackaday readers and the target demographic Makerbot is developing and marketing towards do not intersect. We’re thinking anyone reading this would rather roll up their sleeves and build a 3D scanner, but where to start? Below are a few options out there for those of you who want a 3D scanner but are none too keen on Makerbot’s offering.

Continue reading “3D Printering: Scanning 3D models”

3D mapping of rooms, again

Last year we saw what may be the coolest application of a Kinect ever. It was called Kintinuous, and it’s back again, this time as Kintinuous 2.0, with new and improved features.

When we first learned of Kintinuous, we were blown away. The ability for a computer with a Kinect to map large-scale areas has applications as diverse as Google Street View, creating custom Counter-Strike maps, to archeological excavations. There was one problem with the Kintinuous 1.0, though: scanning a loop would create a disjointed map, where the beginning and end of a loop would be in a different place.

In the video for Kintinuous 2.0, you can see a huge scan over 300 meters in length with two loops automatically stitched back into a continuous scan. An amazing feat, especially considering the computer is processing seven million vertices in just a few seconds.

Unfortunately, it doesn’t look like there will be an official distribution of Kintinuous 2.0 anytime soon. The paper for this Kintinuous is still under review, and there are ‘issues’ surrounding the software that don’t allow an answer to the if and when question of release. Once the paper is out, though, anyone is free to reimplement it, and we’ll gladly leave that as an open challenge to our readers.

Continue reading “3D mapping of rooms, again”

Revolving camera mount helps to capture 3D video-game assests

3d-image-capture

Here’s a camera rig that makes it a snap to produce photorealistic 3D models of an object. It was put together rather inexpensively by an indie game company called Skull Theatre. They published a couple of posts which show off how the rig was built and how it’s used to capture the models.

They’re using 123D, a software suite which is quite popular for digitizing items. The rig has a center table where an object is placed, and a movable jig which holds three different cameras (or one camera for three rotations). You can see the masking tape on the floor which marks the location for each shot. These positions are mapped out in the software so that it has an easy time putting them all together. The shaft which connects the jig to the base is adjustable to accommodate large or small items.

One thing that we found interesting is the team’s technique for dealing with reflections. They use a matte spray to make those surfaces less reflective. This helps 123D do its job but also allows them to map reflective surface more accurately using the game engine.

6 camera face scanning rig

[Ajeromin] was asked to build something cool for a museum exhibit. He took the challenge, and with his facial capture device, we feel he delivered. The writeup is very short, most of the story is in the annotated images. After deciding he was going to do facial capture and convert it to 3d, he had to start planning. There are many ways to do this, but usually the person having their face captured isn’t an excited child at a museum. The presented some unique challenges in that he knew he would have to capture all the images at once, and quickly too. To do this, he lit the entire rig very well to reduce the amount of noise in the pictures and wired all 6 cameras up to snap at the same moment. He even encapsulated the circuit in a glass jar just so the kids could see more of the parts.

The next logical step would be to attach this to a 3d printer and let people buy 3d printed models of their face. The quality is certainly good enough as he shows in one of the final images.

Great job [Ajeromin]