Hologram.io Offers Developers Free Cell Data

If you’ve been thinking of adding cellular connectivity to a build, here’s a way to try out a new service for free. Hologram.io has just announced a Developer Plan that will give you 1 megabyte of cellular data per month. The company also offers hardware to use with the SIM, but they bill themselves as hardware agnostic. Hologram is about providing a SIM card and the API necessary to use it with the hardware of your choice: any 2G, 3G, 4G, or LTE devices will work with the service.

At 1 MB/month it’s obvious that this is aimed at the burgeoning ranks of Internet of Things developers. If you’re sipping data from a sensor and phoning it home, this will connect you in 200 countries over about 600 networks. We tried to nail them down on exactly which networks but they didn’t take the bait. Apparently any major network in the US should be available through the plan. And they’ve assured us that since this program is aimed at developers, they’re more than happy to field your questions as to which areas you will have service for your specific application.

The catch? The first taste is always free. For additional SIM cards, you’ll have to pay their normal rates. But it’s hard to argue with one free megabyte of cell data every month.

Hologram originally started with a successful Kickstarter campaign under the name Konekt Dash but has since been rebranded while sticking to their cellular-connectivity mission. We always like getting free stuff — like the developer program announced today — but it’s also interesting to see that Hologram is keeping up with the times and has LTE networks available in their service, for which you’ll need an LTE radio of course.

Detecting Mobile Phone Transmissions With a Sound Card

Anyone who had a cheap set of computer speakers in the early 2000s has heard it – the rhythmic dit-da-dit-dit of a GSM phone pinging a cell tower once an hour or so. [153armstrong] has a write up on how to capture this on your computer. 

It’s incredibly simple to do – simply plug in a set of headphone to the sound card’s microphone jack, leave a mobile phone nearby, hit record, and wait. The headphone wire acts as an antenna, and when the phone transmits, it induces a current in the wire, which is picked up by the soundcard.

[153armstrong] notes that their setup only seems to pick up signals from 2G phones, likely using GSM. It doesn’t seem to pick up anything from 3G or 4G phones. We’d wager this is due to the difference in the way different cellular technologies transmit – let us know what you think in the comments.

This system is useful as a way to detect a transmitting phone at close range, however due to the limited bandwidth of a computer soundcard, it is in no way capable of actually decoding the transmissions. As far as other experiments go, why not use your soundcard to detect lightning?

Use a Mini PCI-e 3G Card with USB Instead

Back the late 2000s, when netbooks were the latest craze, some models would come with an inbuilt 3G modem for Internet access. At the time, proper mobile Internet was a hip cool thing too — miles ahead of the false prophet known as WAP. These modems would often slot into a Mini PCI-e slot in the netbook motherboard. [delokaver] figured out how to use these 3G cards over USB instead.

It’s actually a fairly straightforward hack. The Mini PCI-e standard has a couple of pins dedicated to USB data lines, which the modem in question uses for communicating with the host computer. Unfortunately it’s not quite as simple as just soldering on a four-wire USB cable. The modem relies on the 3.3V power from the Mini PCI-e slot instead of the 5V from USB. No problem, just get a low-dropout 3.3V regulator and run that off the USB port. Then, it’s a simple enough matter of figuring out which pins are used to talk to the SIM card, and soldering them up to a SIM adapter, or directly to the card itself if you’re so inclined. The guide covers a single model of 3G modem but it’s likely the vast majority of these use a very similar setup, so don’t be afraid to have a go yourself.

Overall Mini PCI-e is a fairly unloved interface, but we’ve seen the reverse of this hack before, a Mini PCI-e to USB adapter used to add a 12-axis sensor to a laptop.

[Thanks to Itay for the tip!]

A Field Guide to the North American Communications Tower

The need for clear and reliable communication has driven technology forward for centuries. The longer communication’s reach, the smaller the world becomes. When it comes to cell phones, seamless network coverage and low power draw are the ideals that continually spawn R&D and the eventual deployment of new equipment.

Almost all of us carry a cell phone these days. It takes a lot of infrastructure to support them, whether or not we use them as phones. The most recognizable part of that infrastructure is the communications tower. But what do you know about them?

Continue reading “A Field Guide to the North American Communications Tower”

Particle Electron – The Solution To Cellular Things

Just over a year ago, Particle (formerly Spark), makers of the very popular Core and Particle Photon WiFi development kits, released the first juicy tidbits for a very interesting piece of hardware. It was the Electron, a cheap, all-in-one cellular development kit with an even more interesting data plan. Particle would offer their own cellular service, allowing their tiny board to send or receive 1 Megabyte for $3.00 a month, without any contracts.

Thousands of people found this an interesting proposition and the Electron crowdfunding campaign took off like a rocket. Now, after a year of development and manufacturing, these tiny cellular boards are finally shipping out to backers and today the Electron officially launches.

Particle was kind enough to provide Hackaday with an Electron kit for a review. The short version of this review is the Electron is a great development platform, but Particle pulled off a small revolution in cellular communications and the Internet of Things

Continue reading “Particle Electron – The Solution To Cellular Things”

Robo Car Via 3G

[Emil Kalstø] has a pretty solid remote control car. We don’t mean a little car with a handheld remote you can drive around the neighborhood. [Emil’s] car has a camera and a cell phone so that it can go anywhere there’s 3G or 4G networking available.

The video (see below) shows the results (along with [Emil’s] little brother acting as a safety officer). The video offers tantalizing detail you might find useful if you want to reproduce a similar vehicle. However, it stops short of providing complete details.

The two batteries onboard will power the vehicle for over 20 hours of continuous use. The 30W motor is reduced with a chain drive to go about “walking speed.” There’s a Raspberry Pi with a Huawei 3G USB dongle onboard and [Emil] uses an XBox controller to do the steering from the warmth of his living room. Of course, a Pi can’t handle a big motor like that directly, so a Phidgets USB motor controller does the hard work. The software is written using Node.js.

The camera mount can swivel 230 degrees on a servo so that the operator can scan the road ahead. The video mentions that steering the car required a heavy-duty servo with metal gears (an earlier attempt with nylon gears didn’t work out).

Overall, it looks like a solid build. We hope [Emil] will share code and more details soon. If you can’t wait (and your insurance is paid up), you might have a go at an even bigger car. Surprisingly, there’s more than one example of that.

Continue reading “Robo Car Via 3G”

WiFi Sucks for RC Vehicles, Upgrade to 3G

This is the Kyosho Blizzard, a tracked remote control vehicle that’s a blast to take out in the rapidly retreating snowpack. [Antibore] was interested in performance testing the range of the thing. It includes a camera that streams video back to a tablet or smartphone. Both the video and the controls use WiFi for communications. As he expected, the rover loses control signal at about fifty meters, with the video has a disappointing twenty meter limit. His workaround is to saddle the crawler with a 3G bridge. Not a bad idea that may be feasibly completed with hardware you have on hand.

In this case he grabbed a Beagleboard-XM. It runs embedded Linux and has USB ports which is perfect for the other two parts of the added hardware: a Huawei E230 3G dongle and a WiFi dongle. This means no alterations to the rover were necessary. He set up OpenVPN and performed a few other tweaks. The WiFi signal is constant, as the transmitter and receiver are both attached to the rover. We just wonder about the latency of the 3G traffic. Let’s hear your thoughts on that in the comments below.

We would be remiss if we didn’t tie-in the potential of this hack. Previously this winter we saw a Kyosho with a 3D printed snow thrower attached to the front. More snow removal power, arguably unlimited range… you can do your entire block from the comfort of the couch. To the Future!