A 555 player piano


From simple buzzers to an Atari Punk Console, the simple 555 timer chip is the foundation of a whole lot of interesting lo-fi synth projects perfect for beginners. [Steven] put together a great tutorial for using the 555 timer in a rudimentary synth, and even went so far as to build a simple electronic player piano able to play a song from a sheet of paper with punched holes.

The basic 555 oscillator circuit is very simple – just a few caps and resistors and powered by a few batteries. [Steven] built the simplest 555 circuit, but used a line of graphite drawn on a piece of paper for the resistor controlling the frequency. It’s basically a drawdio built on a breadboard, and easy enough to build for even the most neophyte electronic tinkerer.

Going one step further, [Stephen] drew a long thick line of pencil graphite on a piece of paper and mounted eleven wire loops attached to the circuit over his improvised resistor. After cutting a few holes in a piece of paper, he was able to create a simple player piano with his 555 synth. It worked well enough to play Greensleeves, and is the perfect project for the budding electronics hacker.

Continue reading “A 555 player piano”

555-timer charges lead acid batteries


[Kenneth Finnegan] took the focus of a great design and redirected it to solve his own problem. What results is this lead acid battery charger based on the 555 timer. It’s not a top-of-the-line, all the bells and whistles type of charger. But it gets the job done with a readily available IC and no need to code for a microcontroller.

The original idea came from a solar battery charger entered in the 555 timer contest. The main difference in application between that and [Kenneth’s] application is the source. A solar array or wind turbine is limited on how much juice it can produce. But mains power can push a shocking (har-har) amount of current if you’re not paying attention. Herein lies the alterations to the circuit design. To control this he’s using a Laptop power supply as an intermediary and only implementing the constant current portion of the tradition 3-stage lead acid charging profile (those stages are explained in his write up).

He did a talk on the charger at his local radio club. You can see the 90-minute video after the break.

Continue reading “555-timer charges lead acid batteries”

Programming a 555 chip


[Phillip] needed a way to trigger an input every 8 hours or so. This is a snap with a microcontroller with a proper timer, but he recently heard about a very cool programmable timer chip that’s also a 555. Of course CSS555 timer chip has an obscure programming interface, but that isn’t a problem when you can program it yourself with a parallel port.

The CSS555 timer chip (PDF…) is a strange little beast. It’s pin compatible with everyone’s favorite timer IC, but also has a programming mode that allows the output to trigger on every 1 cycle, every 10 cycles, and so on up to one output every million cycles. Basically, it’s a 555 with a huge programmable capacitor that only costs two bucks.

After building a programming circuit from a 74125 hex buffer chip, [Philip] connected his programmer to the parallel port of an ancient PC. For a little retrocomputing cred, he wrote a small app in Forth that pushes commands from the parallel port to the CSS555 chip, greatly increasing the time delay of the chip’s stock configuration.

It’s a neat build, and an awesome introduction to a really cool timer chip. Of course this could be easily replicated with a $2 microcontroller, but that wouldn’t give [Philip] the satisfaction of using a 555.

Digital IR Theremin

Digital IR Theremin

This Digital IR Theremin creates tones based on the distance of an object from its IR sensor. There’s no microcontroller here, since the project is part of an Introduction to Digital Electronics course. Instead, it uses a handful of comparators, transistors, AND gates, and a 555 timer to make noise.

The comparators are connected to create window comparators. This configuration will output a digital 1 if the input is between two reference voltages, and 0 if it is not. Using this, the analog output of the IR range sensor can be converted to digital values.

The 555 timer takes care of creating the output waveform. A specific resistor is switched in to the timer’s RC circuit depending on which window comparator is active. This allows for a different tone to be played depending on the distance from the IR sensor.

The result is a square wave, which has a frequency dependant on how close an object is to the IR sensor. By selecting the right resistances for each distance, the theremin can be tuned to play a specific scale.

This is a neat project for people looking to learn digital electronics, and the write up does a great job of explaining the theory. After the break, check out a video of the theremin generating some tones.

Continue reading “Digital IR Theremin”

Pull-string most useless machine

The mechanical simplicity of this pull-string controlled most useless machine is delightful. You can see the metal gripper which is reaching up to tug on a light-fixture-style pull chain. This is how it turns itself off after you’ve pulled the string to power it up.

The device is [Alex555’s] entry in the 7400 Logic competition. We do hope that he ends up posting a schematic because we’d love to see the gritty details of how it works. After the break you can watch two doors open, allowing the arm to raise up and the gripper to grab the chain. This takes just four servo motors, which are controlled by the signal from a 555 timer and some accompanying hardware.

Apparently the chain is a fake, as the servos didn’t provide enough force to actuate that type of switch. It’s not a surprise as those pull chains do require quite a tug. An optical sensor was used to trigger the movement when your hand reaches for the chain.

Continue reading “Pull-string most useless machine”

27 MHz transmitter/receiver pair made with 555 timers

Get your feet wet with radio frequency transmitters and receivers by working your way through this pair of tutorials. [Chris] built the hardware around a couple of 555 timers so you don’t need to worry about any microcontroller programming. He started by building the transmitter and finished by constructing a receiver.

Apparently the 27 MHz band is okay to work with in most countries as long as your hardware stays below a certain power threshold. The carrier frequency is generated by the transmitter with the help of a 27.145 MHz crystal. The signal is picked up by the receiver which uses a hand-wrapped inductor made using an AL=25 Toroid Core. We’d say these are the parts that will be the hardest to find without putting in an order from a distributor. But the rest of the build just uses a couple 555 timer chips and passive components, all of which will be easy to find. The video after the break shows the project used to receive a Morse-code-style message entered with a push button. It would be fun to interface this with your microcontroller of choice and implement your own one-way error correction scheme.

BaceMaker weds organ foot pedals with guitar whammy effects

[Jon Ferwerda] managed to fry the analog electronics on an old electric organ while conducting some circuit bending experiments. It’s a loss, but he’s still left with some cool equipment to play with. Recently he got to work generating tones using the organ’s foot pedals.

There were two types of foot pedal included with this organ, the set that is arranged like a keyboard, and a rocker pedal similar to what you might use with an electric sewing machine. Since the music generation was handled by those fried bits of organ [Jon] got to work interfacing the foot keyboard with a 555 timer. He used a fairly large capacitor to get the frequency into the bass range and wired individual pedals to different parts of a resistor network. But he didn’t stop with that. The rocker pedal has its own variable resistor hardware which lets him bend the pitches are they are being generated which sounds  alike like a guitar whammy effect. He shows his work in the clip after the break. We think he nailed it! This is a perfect supplement to any type of electronic music setup.

Continue reading “BaceMaker weds organ foot pedals with guitar whammy effects”