Discrete FPGA will probably win the 7400 logic competition

For this year’s 7400 logic competition, [Nick] decided to build an FPGA out of logic chips (Internet Archive cached version).

Perhaps a short explanation is in order to fully appreciate [Nick]’s work. The basic component of an FPGA is a slice, or cell, that performs boolean operations on its input and sends the result on its output. The core of these slices is a lookup table – basically a truth table that stores the result of every possible input combination.

One very easy way to implement a lookup table is to use a RAM or EEPROM chip. By tying the address lines of an EEPROM to the input and the data lines to the output, it’s possible to create a single slice of an FPGA very easily.

Unfortunately for [Nick], 74-series memories have long been out of production. There is another option open, though: shift registers. A shift register is basically an 8-bit memory chip with parallel inputs, so combining a shift register with an 8-input multiplexer is a very simple way to implement a 3-input, 1-output FPGA slice.

After figuring out how to tie these slices to bus lines, [Nick] needed a way to program them. Verilog or VHDL would border on insanity, so he wrote his own hardware description language. It’s certainly not as powerful or capable as the mainstream solutions to programming an FPGA, but it’s more than enough.

In the video after the break, you can see [Nick]’s overview of his very large 8-slice FPGA while he runs a combination lock and PWM program. All the code, schematics, and board layout are up on [Nick]’s git if you’d like to build your own.
Continue reading “Discrete FPGA will probably win the 7400 logic competition”

A TTL timer project of yore

[Viktor] just pulled out another one of his decades-old projects. This time around it’s a timer he built using 7400 logic chips. It was a great way for him to learn about electronics, and ended up serving as his alarm clock every morning.

Two pieces of copper clad board were cut to the same size. One of them was etched to act as the circuit board. The other was outfitted as a face plate. The same type of transfer sheets used to mask the traces of the circuit were also used to apply labels to the face plate. It was then coated with acrylic spray to protect it and stave off corrosion. The clock keeps time based on a half-wave rectified signal. The source is from a transformer which steps mains voltage down to a safe level for the 7805 regulator that supplies the clock’s power bus.

We’re glad [Viktor] has been showing off these old projects. We’ve also enjoyed seeing a TV sleep timer he built. If you’ve got something neat for yester-year why not dust it off, post the details, and send us a tip about it?

7400 project encrypts and decrypts data

[Nakul], [Nikilesh], and [Nischal] just finished posting about their entry in the 2012 Open 7400 Logic competition. It’s an encryption system based entirely on 7400 logic chips. The device operates on 8-bit binary numbers, which limits its real-world applications. But we bet they learned a lot during the development process.

The encryption algorithm is based on a the concept of cellular automaton. This is a something with which we’re already familiar having seen many Conway’s Game of Life projects around here. What we’re not familiar with is this particular wing of the concept called ‘Rule 30‘. It works well with this project because a complex pattern can be generated from simple beginnings.

After conceptualizing how the system might work the team spent some time transferring the implementation to the chips they had available. The end result is a quartet of chip-packed breadboards and a rat’s nets of wires, but the system is capable of both encrypting and decrypting data.

Configurable RFID tag from 7400 logic chips

This soldering nightmare is a configurable RFID tag which has been built from 7400-series logic chips. The beast of a project results in an iPhone-sized module which can be used as your new access card for security systems that uses the 125 kHz tags. The best part is that a series of switches makes the tag hand programmable, albeit in binary.

Of course this is an entry in this year’s 7400 Logic Competition. It’s from last year’s winner, and he’s spent a lot of time documenting the project; which we love. We were surprised that this many chips can be powered simply by what is induced in the coil from the reader. This is just one of the reasons the 7400-series have been so popular over the years. After working out the numbers, a 64-bit shift register was built to feed the tag ID to the encoding portion of the design. There were many kinks to work out along the way, but once it was functional a surface-mount design was put together resulting in the final product shown off in the video after the break.

Continue reading “Configurable RFID tag from 7400 logic chips”

Decades old TV gets sleep function thanks to 7400 family of chips

[Viktor] dredged up a hack he pulled off years ago. His grandfather likes to end the day in front of the TV, but he falls asleep soon after sitting down. Rather than tick away the electricity meter all night, [Viktor] built an automatic shutoff which is akin to a modern TV’s sleep feature.

At the time microcontrollers were not as easy to source as they are now. So [Viktor] used a circuit based on the 7400 family of logic chips. It uses a multivibrator to feed some binary counter chips. These are used to divide the oscillations to establish the desired timing. He tuned the system to be about 15 minutes, but that can be adjusted using a potentiometer built into the multivibrator. When time is about the run out an LED next to the TV comes on. This way if [Viktor’s] grandfather is still awake he can press a button next to his chair to reset the counter. But if he’s already snoozing the counter will eventually switch off the television.

2012 Open 7400 Logic Competition

The Open 7400 Logic Competition is being held again this year. Start thinking about your entries, they’ll need to be finished and submitted by October 31st. As motivation, Digilent has put up two of their Analog Discovery kits as prizes. They can be used as a dual channel oscilloscope, function generator, or 16-channel logic analyzer. Last year was the first time the competition was held. As hype for the event built, more and more prize sponsors signed on and we hope to see the same thing happen this year.

Your entry can be just about anything as long as you show your schematic, explain the project, and use logic. It can be 7400 TTL, 4000 CMOS, discrete gates, or even a CPLD. Last year’s entries spanned a wide range of themes from LED blinkers, to unorthodox 74xx chip hacking, to boards packed full of chips. Good luck and don’t forget to tip us off about your work!

[Thanks Adrian]

Quick and easy Arduino-powered theremin

[Martin] sent in a great guide to a simple Arduino based theremin. It’s a very small build – just a single common IC and some passive components – and easy enough to build in an afternoon.

The theremin is based on a simple LC oscillator built around a 7400 quad NAND gate IC, a wire antenna, and a few caps and resistors. When a hand moves closer to the antenna, the frequency of the oscillator increases; when a hand moves away, the frequency decreases. On the software side, the oscillator is connected to the internal hardware counter of the Arduino. Every time there’s a change in the voltage output by the oscillator (all the time, varying slightly with the distance from a hand to the antenna), the counter increases by one. This counter is tallied up over 1/10th of a second, and the distance from the instrumentalist to the theremin can be determined. From there, it’s just outputting a frequency to a speaker.

All the code, schematics, and board layouts are available on [Martin]’s guide, and most of our readers probably have the parts to build this lying around their workbench. You can check out a video of [Martin]’s theremin in action on his guide.