Mechanical CPU clock is just as confusing as its namesake

[Lior Elazary] designed and built this clock to simulate the function of a CPU. The problem is that if you don’t already have a good grasp of how a CPU works we think this clock will be hopelessly confusing. But lucky for us, we get it, and we love it!

Hour data is shown as a binary number on Register A. This is the center column of red parts and is organized with the MSB on the bottom, the LSB on the top, and left-pointing bits function as digital 1. The clock lacks the complexity necessary for displaying any other time data. But that’s okay, because the sound made by the ball-bearing dropping every minute might drive you a bit loony anyway. [Lior] doesn’t talk about the mechanism that transports that ball bearing, but you can see from the video after the break that a magnet on a circular path picks it up and transports it to the top of the clock where gravity is used to feed the registers. There are two tracks which allow the ball to bypass the A register and enter the B register to the right. This works in conjunction with register C (on the left) to reset the hours when the count is greater than 11.

If you need a kickstart on how these mechanical adders are put together, check out this wooden adder project.

[Read more...]

Binary adder will give you slivers

marble_adder

A while back we looked at [Matthias'] one-pin dot matrix printer. Now we’re jumping over to his woodworking website to feast on his wooden binary adding machine. His creation uses glass marbles as the data for this device. A resolution of up to six bits can be set on the top of the adder, then dropped into the machine as one number. With each new drop, the number is added to the total stored in the machine. The device is limited to totals less than 64. If a larger number is enter, the device wraps around back to zero by dumping the 7th bit off the end. He’s even got a master clear that allows you to easily read the stored total and evacuate the “data” from the machine.

This has quite a few less wires than the last binary adder we looked at… wait, it has no wires! But we still love it. A physical representation of what is going on with binary math really helps grasp what the magic blue smoke inside those silicon chips is all about. Don’t miss his video walk through of the adding machine embedded after the break. Can’t get enough of marbles interacting with wood? He’s got a few more projects you might enjoy. [Read more...]