Hackaday Prize 2023: An Agricultural Robot That Looks Ready For The Field

In the world of agriculture, not all enterprises are large arable cropland affairs upon which tractors do their work traversing strip by strip under the hot sun. Many farms raise far more intensive crops on a much smaller scale, and across varying terrain. When it comes to automation these farms offer their own special challenges, but with the benefit of a smaller machine reducing some of the engineering tasks. There’s an entry in this year’s Hackaday prize which typifies this, [KP]’s Agrofelis robot is a small four-wheeled carrier platform designed to deliver autonomous help on smaller farms. It’s shown servicing a vineyard with probably one of the most bad-ass pictures you could think of as a pesticide duster on its implement platform makes it look for all the world like a futuristic weapon.

A sturdy tubular frame houses the battery bank and brains, while motive power is provided by four bicycle derived motorized wheels with disk brakes. Interestingly this machine steers mechanically rather than the skid-steering found in so many such platforms. On top is a two degrees of freedom rotating mount which serves as the implement system — akin to a 3-point linkage on a tractor. This is the basis of the bad-ass pesticide duster turret mentioned above. Running it all is a Nvidia Jetson Nano, with input from a range of sensors including global positioning and LIDAR.

The attention to detail in this agricultural robot is clearly very high, and we could see machines like it becoming indispensable in the coming decades. Many tasks on a small farm are time-consuming and involve carrying or wheeling a small machine around performing the same task over and over. Something like this could take that load off the farmer. We’ve been there, and sure would appreciate something to do the job.

While we’re on the subject of farm robots, this one’s not the only Prize entry this year.

Automated Drone Takes Care Of Weeds

Commercial industrial agriculture is responsible for providing food to the world’s population at an incredibly low cost, especially when compared to most of human history when most or a majority of people would have been involved in agriculture. Now it’s a tiny fraction of humans that need to grow food, while the rest can spend their time in cities and towns largely divorced from needing to produce their own food to survive. But industrial agriculture isn’t without its downsides. Providing inexpensive food to the masses often involves farming practices that are damaging to the environment, whether that’s spreading huge amounts of synthetic, non-renewable fertilizers or blanket spraying crops with pesticides and herbicides. [NathanBuildsDIY] is tackling the latter problem, using an automated drone system to systemically target weeds to reduce his herbicide use.

The specific issue that [NathanBuildsDIY] is faced with is an invasive blackberry that is taking over one of his fields. To take care of this issue, he set up a drone with a camera and image recognition software which can autonomously fly over the field thanks to Ardupilot and a LiDAR system, differentiate the blackberry weeds from other non-harmful plants, and give them a spray of herbicide. Since drones can’t fly indefinitely, he’s also build an automated landing pad complete with a battery swap and recharge station, which allows the drone to fly essentially until it is turned off and uses a minimum of herbicide in the process.

The entire setup, including drone and landing pad, was purchased for less than $2000 and largely open-source, which makes it accessible for even small-scale farmers. A depressing trend in farming is that the tools to make the work profitable are often only attainable for the largest, most corporate of farms. But a system like this is much more feasible for those working on a smaller scale and the automation easily frees up time that the farmer can use for other work. There are other ways of automating farm work besides using drones, though. Take a look at this open-source robotics platform that drives its way around the farm instead of flying.

Thanks to [PuceBaboon] for the tip!

Continue reading “Automated Drone Takes Care Of Weeds”

Smoke Some Weeds: Lasers Could Make Herbicide Obsolete

We’ve all tangled with unwelcome plant life at one point or another. Whether crabgrass infested your lawn, or you were put on weeding duty in your grandfather’s rose patch, you’ll know they’re a pain to remove, and a pain to prevent. For farmers, just imagine the same problem, but scaled up to cover thousands of acres.

Dealing with weeds typically involves harsh chemicals or excessive manual labor. Lasers could prove to be a new tool in the fight against this scourge, however, as covered by the BBC.

Continue reading “Smoke Some Weeds: Lasers Could Make Herbicide Obsolete”

Picture of NanoStat in 3D-printed enclosure with LiPo battery and US quarter for scale.

An ESP32-Based Potentiostat

Ever wanted to make your own wireless chemical sensor? Researchers from the University of California, Irvine (UC Irvine) have got you covered with their ESP32-based potentiostat.

We’ve talked about potentiostats here on Hackaday before. Potentiostats are instruments that analyze the electrical properties of an electroactive chemical cell. Think oxidation and reduction reactions (redox) from your chemistry course, if you can remember that far back. Potentiostats can be used in several different modes/configurations, but the general idea is for these instruments to induce redox reactions within a given electroactive chemical cell and then measure the resulting current produced by the reaction. By measuring the current, researchers can determine the concentration of a known substance within a sample or even determine the identity of an unknown substance, to name a few potential applications.

These instruments have become mainstays in research labs around the world and have incredible utility in the consumer space. Glucometers, devices used to measure blood glucose levels, are an example of technologies that have made their way into everyday life due to the advances made in electrochemistry and potentiostat research over the last few decades. Given their incredible utility to scientific research and medical technologies, a great deal of effort has gone into democratizing potentiostats, making them more available to the general public for educational and hobbyist purposes. Of course, any medical applications must go through rigorous testing and approvals by each country’s appropriate governing bodies. So we’re talking more non-medical purposes here.

The first popular open-source, DIY potentiostat was the CheapStat, which we’ve covered here on Hackaday before. Since then, developing newer and more advanced open-source potentiostats has become a popular endeavor within the scientific community. The researchers from UC Irvine wanted to put their own special spin on the open-source potentiostat craze and they did so with their inclusion of the ESP32 as their main processor. This obviously opens up them up do a whole host (see what we did there) of wireless capabilities that others before them have not explored.

With the ESP32, they developed a nice web-based GUI that makes controlling and collecting data from the potentiostat very seamless and user-friendly. You can imagine the great possibilities here. Teacher-led classroom demonstrations where the instructor can easily access each student’s device over the cloud to help troubleshoot or explain results. Developing soil monitoring sensors that can be deployed all around a farm to remotely collect data on feed, soil composition, and plant health. The possibilities here sure are promising.

We hope you’ll dive into their paper as it’s well worth a read. Happy hacking, Hackaday.

A display in a field showing the water stress index over time

Hackaday Prize 2022: Using Infrared Thermometers To Measure Crops’ Water Stress

If you live anywhere on the Northern Hemisphere, you’re likely to have experienced one of the many heatwaves that occurred this summer. Extreme heat is dangerous for humans and animals, but plants, including important crops, also suffer. High temperatures lead to increased transpiration and evaporation, and if the water lost in this way is not replenished quickly enough, plants will stop growing and eventually wither and die.

In order to keep track of the amount of water available to crops, [Florian Ellsäßer] built the Crop Water Stress Sensor: a device that checks whether plants have enough moisture available to stay healthy. It does this by measuring the temperature of the leaves to calculate evaporation levels. If the leaves are cooler than their surroundings, this means that water is evaporating from them and the plant apparently has enough water available. If the leaves’ temperature is closer to the ambient temperature, then the plant may be running low on water.

[Florian]’s system performs this measurement using an infrared array, which is basically a low-resolution thermal camera that remotely measures the temperature of everything in its field of view. This IR array is pointed at a field, where it will see both leaves and the ground between them. The difference in temperature between these two can then be used to calculate the Crop Water Stress Index (CWSI), a standardized measure of how well-hydrated plants are. The result is shown on a display and also indicated using a convenient red-yellow-green status LED that shows if the crops in question need watering.

The system can be solar powered for completely remote operation, while its data can be read out through a WiFi interface. [Florian] is planning to update the design with a LoRa interface for greater range: the eventual goal is to build a large network of these sensors throughout agricultural areas and use the combined data to raise awareness of water shortages in certain areas. In order to make the sensors easy to build by anyone interested, all design files are available on the project page.

Keeping crops moisturized is one of the key tasks of agriculture, and we’ve seen several projects that aim to optimize and automate it, from a simple-but-effective ESP8266-based moisture sensor to complete hydroponics systems.

Agrivoltaics Is A Land Usage Hack For Maximum Productivity

Land tends to be a valuable thing. Outside of some weird projects in Dubai, by and large, they aren’t making any more of it. That means as we try to feed and power the ever-growing population of humanity, we need to think carefully about how we use the land we have.

The field of agrivoltaics concerns itself with the dual-use of land for both food production and power generation. It’s all about getting the most out of the the available land and available sunlight we have.

Continue reading “Agrivoltaics Is A Land Usage Hack For Maximum Productivity”

Kotonki: Agricultural Vehicle Built For Customization

Agriculture on any scale involves many tasks that require lifting, hauling, pushing, and pulling. On many modern farms, these tasks are often done using an array of specialized (and expensive) equipment. This puts many small-scale farmers, especially those in developing countries, under significant financial pressure. These challenges led a South African engineering firm to develop the Kotonki, a low-cost hydraulically powered utility vehicle that can be customized for a wide variety of use cases. Video after the break.

The name Kotonki is derived from the Setswana phrase for a donkey kart. It is in essence a self-propelled hydraulic power pack, capable of hauling 1 ton of anything that can fit on its load bed. It comes in front-wheel drive or four-wheel drive versions, with each wheel individually driven by a hydraulic motor. The simple welded steel frame articulates around a double pivot, which allows it to keep all 4 wheels on the ground over any terrain. At a max speed of 10 km/h it won’t win any races, but neither would most other agricultural vehicles. The Kotonki is built mostly using off-the-shelf components and is powered by a common 12HP Honda engine. In the world of DRM agricultural equipment, this makes for simple repairs, low running costs, and easy customization for the task at hand. This can include mounting log splitters, water pumps, lifting beds, or anything else that can be driven by its hydraulic and rotary PTOs (Power Take-Off).

Continue reading “Kotonki: Agricultural Vehicle Built For Customization”