You will all no doubt be familiar with the 74 series logic integrated circuits, they provide the glue logic for countless projects. If you look back through old listings of the series you’ll find alongside the familiar simple gates a host of now obsolete chips that reveal their roots in the pre-microprocessor computer industry of the late 1960s, implementing entire functions that would now be integrated.

One of the more famous of these devices is the 74181, a cascadable 4-bit arithmetic logic unit, or ALU. An ALU is the heart of a microprocessor, performing its operations. The 74181 appeared in many late-60s and early-70s minicomputers, will be familiar to generations of EE and CS students as the device they were taught about ALUs on, and can now be found in some home-built retrocomputers.

[Ken Shirriff], doyen of the integrated circuit teardown, has published a piece taking a look at the 74181, in particular at its logic functions and the reason for some of them that are rather surprising. As well as the normal logic functions, for example the chip can do “(A + B) PLUS AB“. Why on earth you might think would an ALU need to do that?

The answer lies in the way it performs carrying while adding, a significant speed-up can be achieved over ripple carrying along a chain of adders if it can be ascertained whether a bit addition might generate a carry bit. He explains the function required to perform this operation, and suddenly the unusual extra function makes sense. Addition is transformed from a serial process to a parallel one, with a consequent speed increase.

It’s one of those moments in which you have to salute those logic designers from an era when on-chip real-estate was costly and every ounce of speed had to be teased from their designs. Give it a read, and have a go at the interactive 74181 simulator further down [Ken]’s page. We learned something from the article, and so may you.

We brought you the first part of [Ken]’s 74181 investigations earlier in the year. If you would like to see a 74181 in action, take a look at this 4-bit 74 logic single board computer.