Building Homebrew VTOL Rockets

No one can deny what SpaceX and Blue Origin are doing is a feat of technological wizardry. Building a rocket that takes off vertically, goes into space, and lands back on the pad is an astonishing technical achievement that is literally rocket science. However, both SpaceX and Blue Origin have a few things going for them. They have money, first of all. They’re building big rockets, so there’s a nice mass to thrust cube law efficiency bump. They’re using liquid fueled engines that can be throttled.

[Joe Barnard] isn’t working with the same constraints SpaceX and Blue Origin have. He’s still building a rocket that can take off and land vertically, but he’s doing it the hard way. He’s building VTOL model rockets. Most of the parts are 3D printed. And he’s using solid motors you can buy at a hobby shop. This is the hard way of doing things, and [Joe] is seeing some limited success with his designs.

While the rockets coming out of Barnard Propulsion Systems look like models of SpaceX’s test vehicles, there’s a lot more here than looks. [Joe] is using a thrust vectoring system — basically mounting the Estes motor in a gimbal attached to a pair of servos. This allows the rockets to fly straight up without fins or even the launch rod used to get the rocket up to speed in the first few millseconds of flight. This is active stabilization of a model rocket, with the inevitable comments of ITAR violations following soon afterward.

Taking off vertically is one thing, but [Joe] is also trying to land his rockets vertically. Each rocket he’s built has a second Estes motor used only for landing. During descent, the onboard microcontroller calculates the speed, altitude, and determines if it’s safe to attempt a vertical landing. If the second motor has sufficient impulse to make velocity and altitude equal zero at the same time, the landing legs deploy and the rocket hopefully makes a soft touchdown in the grass.

While [Joe] hasn’t quite managed to pull off a vertical takeoff and landing with black powder motors quite yet, he’s documenting and livestreaming all of his attempts. You can check out the latest one from a week ago below.

Continue reading “Building Homebrew VTOL Rockets”

Serial Telemetry To Wi-Fi With An ESP8266 user [J. M. Hopkins] had a problem with his rocketry. Telemetry from the rockets came down to Earth via a 433MHz serial link, but picking just the bits he needed from a sea of data for later analysis on a laptop screen on bright sunny days was getting a little difficult.

His solution was to bring the serial data from his transceiver module to an ESP8266, and from that both share it over WiFi and display pertinent information via I2C to an LCD for easy reference. And he’s put the whole lot with a power supply in a rather splendid wooden case with an SMA socket on the back to attach his Yagi.

All information received from the telemetry is passed to a client connecting via Telnet over the WiFi, but pertinent information for the LCD is selected by sending it from the rocket enclosed in square brackets. We hope that the source code will be forthcoming in time.

This isn’t the first time we’ve featured rocket telemetry here at Hackaday. And we’d be missing a trick if we didn’t point out that this project is using our own Hackaday-branded Huzzah ESP8266 breakout board from the Hackaday Store.

Hacklet 68 – Rocket Projects

There’s just something amazing about counting down and watching a rocket lift off the pad, soaring high into the sky. The excitement is multiplied when the rocket is one you built yourself. Amateur rocketry has been inspiring hackers and engineers for centuries. In the USA, modern amateur rocketry gained popularity after Sputnik-1, continuing on through the space race. Much of this history captured in the book Rocket Boys by Homer Hickam, which is well worth a read. This week’s Hacklet is dedicated to some of the best rocketry projects on!

rocket1We start with [Sagar] and Guided Rocket. [Sagar] is building a rocket with a self stabilization system. Many projects use articulated fins for this, and [Sagar] plans to add fins in the future, but he’s starting with an articulated rocket motor. The motor sits inside a gimbal, which allows it to tilt about 10 degrees in any direction. An Arduino is the brain of the system. The Arduino gathers data from a MPU6050 IMU sensor, then determines how to steer the rocket motor. Steering is accomplished with a couple of micro servos connected to the gimbal.


rocket2Next up is [Howie], with Homemade rocket engine. [Howie] is cooking some seriously hot stuff on his stove. Rocket candy to be precise, similar to the fuel [Homer Hickam] wrote about in Rocket Boys. This solid fuel is so named because one of the main ingredients is sugar. The other main ingredient is stump remover, or potassium nitrate. Everything is mixed and heated together on a skillet for about 30 minutes, then pushed into rocket engine tubes. It goes without saying that you shouldn’t try this one at home unless you’re really sure of what you’re doing!


rocket3Everyone wants to know how high their rocket went. [Vcazan] created AltiRocket to record acceleration and altitude data. AltiRocket also transmits the data to the ground via a radio link. An Arduino Nano keeps things light. A BMP108 barometric sensor captures pressure data, which is easily converted into altitude. Launch forces are captured by a 3 Axis accelerometer. A tiny LiPo battery provides power. The entire system is only 23 grams! [Vcazan] has already flown AltiRocket, collecting data from several flights earlier this summer.


rocket4Finally we have [J. M. Hopkins] who is working on a huge project to do just about everything! High Power Experimental Rocket Platform includes designing and building everything from the rocket fuel, to the rocket itself, to a GPS guided parachute recovery system. [J. M. Hopkins] has already accomplished two of his goals, making his own fuel and testing nozzle designs. The electronics package to be included on the rocket is impressive, including a GPS, IMU, barometric, and temperature sensors. Data will be sent back to the ground by a 70cm transceiver. The ground station will use a high gain human-guided yagi tracking antenna with a low noise amplifier to pick up the signal.

If you want more rocketry goodness, check out our brand new rocket project list! Rocket projects move fast, if I missed yours as it streaked by, don’t hesitate to drop me a message on That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of!

I Love the Smell of Rocket Candy in the Morning

[Grant Thompson aka “The King of Random”] has created a great tutorial on making sugar rocket motors. [Grant] is using a fuel based on potassium nitrate and sugar. Known as Rocket Candy or R-Candy in the amateur rocket community, various forms of this mixture have been used for decades. In fact, this is similar to one of the mixtures [Homer Hickam] and friends used to build rockets in his novel Rocket Boys.

[Grant] bought a cheap blender from the thrift store, which he used to grind his ingredients. You probably won’t want to use this blender for food after it’s been full of KNO3-based stump remover. The blender made quick work of grinding down the KNO3 to a fine powder. [Grant] then added in powdered sugar and carefully mixed the two by shaking, not by running the blender.

A 5″ length of schedule 40 PVC pipe made the rocket motor casing. The rocket motor’s end caps are made from ground clay cat litter. [Grant] rams the layers with a wooden dowel and hammer. First a top cap of clay, then the rocket fuel, then a bottom cap also of clay. With all the layers in place, he hand drilled a hole through the bottom cap and the entire fuel layer. Drilling all the way through turns the motor into a core burning rocket. The entire fuel cylinder burns away from the inside out, with more surface area than burning the end alone.

[Grant] tested his rocket motor at a remote location. We probably would have gone with an electric igniter rather than a fireworks style fuse, but the end result is the same. The rocket motor performed admirably, blasting up to over 2000 feet in altitude.

It goes without saying that working with solid rocket fuel isn’t something to be taken lightly. Something as simple as an air gap in the fuel could lead to a CATO, turning this rocket motor into a pipe bomb. We echo [Grant’s] suggestion to search for local amateur rocket clubs before trying this one at home.

Continue reading “I Love the Smell of Rocket Candy in the Morning”

Two-stage rocket climbs to 15 km, promptly gets lost

Last month, the Cambridge University Spaceflight society launched two stages of their Martlet 1 three-stage rocket. After seeing our call for rocket builds, they sent in a launch report. We’re glad they did; it’s an amazing piece of work that screams into the atmosphere faster than the speed of sound.

The society is designed the three-stage Martlet 1 with the goal of reaching 15km (50,000 feet) over a launch range at Ben Armine in Scotland. This launch was a test of stage separation, intended to work out any bugs in the system before going to the full-sized rocket.

When Martlet 1 takes off, it’s 1st stage engine fires for 5 seconds and coasts for another 9 seconds. In the video after the break, the guys expected to hear the pop of the second stage igniting after 14 seconds. The team forgot to account for the fact the rocket would be 3km in the air at that time, and thanks to the slowness of sound the second stage was heard though the clouds at 25 seconds after launch.

With rockets, hardly anything goes exactly as planned, so unfortunately the team only recovered the bottom half of their rocket. After searching over 60 square km for the second stage, the guys realized it might be lost to the moors of Scotland. Hopefully the second stage will turn up soon so the full 3 stage stack can be realized.

Check out the launch videos after the break.

Continue reading “Two-stage rocket climbs to 15 km, promptly gets lost”