Building a Full-Spectrum Digital Camera on the Cheap

The sensor on your digital camera picks up a lot more than just the light that’s visible to the human eye. Camera manufacturers go out of their way to reduce this to just the visible spectrum in order to produce photos that look right to us. But, what if you want your camera to take photos of the full light spectrum? This is particularly useful for astrophotography, where infrared light dramatically adds to the effect.

Generally, accomplishing this is just a matter of removing the internal IR-blocking filter from your camera. However, most of us are a little squeamish about tearing into our expensive DSLRs. This was the dilemma that [Gavin] faced until a couple of years ago when he discovered the Canon EOS-M.

Now, it’s important to point out that one could do a similar conversion with just about any cheap digital camera and save themselves a lot of money (the practically give those things away now). But, as any photography enthusiast knows, lenses are just as important as the camera itself (maybe even more so).

photo-31So, if you’re interested in taking nice pictures, you’ve got to have a camera with an interchangeable lens. Of course, if you’re already into photography, you probably already have a DSLR with some lenses. This was the case for [Gavin], and so he needed a cheap digital camera that used Canon interchangeable lenses like the ones he already had. After finding the EOS-M, the teardown and IR-blocking filter removal was straightforward with just a couple of hiccups.

When [Gavin] wrote his post in 2014, the EOS-M was about $350. Now you can buy them for less than $150 used, so a conversion like this is definitely into the “cheap enough to tinker” realm. Have a Nikon camera? The Nikon 1 J3 is roughly equivalent to the original EOS-M, and is about the same price. Want to save even more money, and aren’t concerned with fancy lenses? You can do a full-spectrum camera build with a Raspberry Pi, with the added benefit of being able to adjust what light is let in.

If We Were All Astronomers There’d Be No More War

We recently reported on the amateur scientific work of Forrest Mims. Forrest is somewhat unique in being an amateur scientist who has consistently published his work in leading scientific journals. One area of scientific investigation has however attracted amateur scientific contributions of the highest quality almost since its inception, amateur astronomy.

willhay
Will Hay – Amateur Astronomer

You’ve likely heard of amateur astronomers like David Levy co-discoverer of the Comet Shoemaker–Levy 9 comet, and citizen science projects like galaxy zoo. But the history of amateur astronomy goes back far further than this, in fact as far back as 1781 William Herschel discovered the planet Uranus while employed as a Musician. Another entertainer of sorts, 1930s British comic actor, Will Hay, also made significant contributions discovering a “Great White Spot” on Saturn in-between films roles. Will was an avid amateur astronomer who regularly published his observations.

His belief that astronomy allows us to see humanity’s place in the universe in its true proportion led him to claim “If we were all astronomers there’d be no more war”.

While Will recorded his observations, hand drawn, in a log book. Modern astronomers digitally image the night sky. Digital cameras are of course optimized around the human visual system (as we recently discussed) making them less than ideal for astrophotography. Hackers have therefore made a number of innovations, one of the more audacious being the removal of the Bayer filter:

Continue reading “If We Were All Astronomers There’d Be No More War”

Astrophotography and Data-Analysis Sense Exoplanets

[David Schneider] was reading about recent discoveries of exoplanets. Simply put these are planets orbiting stars other than the sun. The rigs used by the research scientists include massive telescopes, but the fact that they’re using CCD sensors led [David] to wonder if a version of this could be done on the cheap in the backyard. The answer is yes. By capturing and processing data from a barn door tracker he was able to verify a known exoplanet.

Barn Door trackers are devices used to move a camera to compensate for the turning of the earth. This is necessary when taking images throughout the night, as the stars will not remain “stationary” to the camera’s frame without it. The good news is that they’re simple to build, we’ve seen a few over the years.

Other than having to wait until his part of the earth was pointed in the correct direction (on a clear night) at the same time as an exoplanet transit, [David] was ready to harvest all the data he needed. This part gets interesting really quickly. The camera needed to catch the planet passing in between the earth and the star it revolves around (called a transit). The data to prove this happened is really subtle. To uncover it [David] needed to control the data set for atmospheric changes by referencing several other stars. From there he focused on the data for the transit target and compared points across the entire set of captured images. The result is a dip in brightness that matches the specifications of the original discovery.

[David] explains the entire process in the clip after the break.

Continue reading “Astrophotography and Data-Analysis Sense Exoplanets”

Finding Meteors, Satellites, and Star Trails with a Raspberry Pi

meteorite

The Raspberry Pi is an incredibly popular, cheap, and low power computer that also has a nifty camera add-on that is completely programmable. This opens up a log of possibilities for long-exposure photography, and [Jippo] has found the best use so far: long exposure astrophotography for capturing meteors, satellites, and star trails.

[Jippo] is using a stock Raspi and camera module with a little bit of custom software written by his friend [Jani Lappalainen] that grabs image data from the camera and saves it either as a time-lapse, or only when something significantly changes. This would include meteors and Iridium flares, as well as passing planes, reflections of satellites, and of course long-exposure star trails.

So far, [Jippo] has already captured enough images to amount to a great night of skywatching. There’s a great picture of a meteor, a few pictures of satellites reflecting the sun, and some great star trails. The software [Jippo] is using is available on his site along with a gallery of his highlight reel.

AVR Barn Door Tracker for Astrophotography

zzjBarnDoorTracker

[ZigZagJoe’s] first foray into astrophotography is this impressive AVR barn door tracker, which steps up his night sky photo game without emptying his bank account. If you’ve never heard of astrophotography, you should skim over its Wikipedia page and/or the subreddit. The idea is to capture images otherwise undetectable by the human eye through longer exposures. Unfortunately, the big ball of rock we all inhabit has a tendency to rotate, which means you need to move the camera to keep the night sky framed up.

Most trackers require precision parts and fabrication, which was out of [ZigZagJoe’s] grasp. Instead, he found a solution with the Cloudbait Observatory model, which as best as we can tell looks vaguely similar to the tracker we featured last year. Unlike last year’s build—which uses an ATmega32u4 breakout board— [ZigZagJoe’s] tracker uses an ATTiny85 for the brains, running a pre-configured table that determines step rate against time.

Continue reading “AVR Barn Door Tracker for Astrophotography”

Open Source Telescope Control

board

Telescope mounts connected to computers and stepper motors have been available to the amateur astronomer for a long time, and for good reason, too. With just the press of a button, any telescope can pan over to the outer planets, nebula, or comets. Even if a goto command isn’t your thing, a simple clock drive is a wonderful thing to have. As with any piece of professional equipment, hackers will want to make their own version, and thus the openDrive project was born. It’s a project to make an open source telescope controller.

Right now, the project is modular, with power supply boards, a display board, motor driver, an IO board (for dew heaters and the like), and a hand-held controller. There’s an openDrive forum that’s fairly active covering both hardware and software. If you’re looking for a project to help you peer into the heavens, this is the one for you. If telescope upgrades aren’t enough to quench your astronomical thirst you could go full out with a backyard observatory build.

Danke [Håken] for the tip.

DIY PC to telescope interface cable

diy.pc.to.telescope.interface.cable

If you’re serious about astronomy these days, you want to have a computer controlled telescope. Although you can easily purchase a pre-made cable that connects the two devices, where’s the fun in that? [Charles], being an avid Maker, has created a nice step by step guide so you can build your own.

This is a great weekend project, and one that even a novice electronics hobbyist should be able to tackle. It’s straight forward, rather quick, and very easy. Strip some insulation off both ends of the cable, then cut off the unneeded wires. (You’ll only be working with three of them.) Prep everything with heat shrink tubing. Crimp one end of the wires into an RJ10 plug, then solder the other end of the wires into a DB9 connector. Secure the heat shrink tubing in place, attach the housings, and you can call it finished!

[Charles] said the whole procedure only took him around 15 minutes. Total cost? Less than $17 in parts.