Precision Pressure In A Piston

[Scott] is building a DIY yeast reactor for his aquarium. What’s a yeast reactor? [Scott] wants to pump carbon dioxide into his aquarium so his aquatic plants grow more. He’s doing this with a gallon of sugary, yeasty water bubbling into a tank of plants and fish. In other words, [Scott] is doing this whole thing completely backward and utilizing the wrong waste product of the yeast metabolism.

However, along the way to pumping carbon dioxide into his aquarium, [Scott] created a very high precision pressure sensor. It’s based on a breakout board featuring the MS5611 air pressure sensor. This has a 24-bit ADC on board, which translates into one ten-thousandths of a pound per square inch of pressure.

To integrate this pressure sensor into the aquarium/unbrewery setup, [Scott] created a pressure meter out of a syringe. With the plunger end of this syringe encased in epoxy and the pointy end still able to accept needles, [Scott] is able to easily plug this sensor into his yeast reactor. The data from the sensor is accessible over I2C, and a simple circuit with an ATmega328 and a character LCD displays the current pressure in the syringe.

We’ve seen these high-resolution pressure sensors used in drones and rockets as altimeters before, but never as a pressure gauge. This, though, is a cheap and novel solution for measuring pressures between a vacuum and a bit over one atmosphere.

Continue reading “Precision Pressure In A Piston”

Thermal Panorama One Pixel At A Time

Inspiration can strike from the strangest places. Unearthing a forgotten Melexis MLX90614 thermopile from his  ‘inbox,’ [Saulius Lukse] used it to build a panoramic thermal camera.

[Lukse] made use of an ATmega328 to control the thermal sensor, and used the project to test a pair of two rotary stage motors he designed for tilt and pan, with some slip rings to keep it in motion as it captures a scene. That said, taking a 720 x 360 panoramic image one pixel at a time takes over an hour, and compiling all that information into an intelligible picture is no small feat either. An occasional hiccup are dead pixels in the image, but those are quickly filled in by averaging the temperature of adjoining pixels.

The camera  rig works — and it does turn out a nice picture — but [Lukse]  says an upgraded infrared camera to captured larger images at a time and higher resolution would not be unwelcome.

 

Another clever use of a thermopile might take you the route of this thermal flashlight. if you don’t build your own thermal camera outright.

[Thanks for the tip, Imn!]

T-Rex Runner Runs on Transistor Tester

If you’ve ever spent time online buying electronic doodads — which would mean almost all of us — then sooner or later, the websites get wind of your buying sprees and start offering “suggested” advertisements for buying more useless stuff. One commonly offered popular product seems to be a universal component tester, often referred to as a “Mega328 Transistor Tester Diode Triode Capacitance ESR Meter”. These consist of an ATmega328, an SPI LCD display, a Button, a ZIF socket and a few other components. Almost all of them are cheap clones of the splendid AVR-TransistorTester project by [Markus Frejek]. [Robson Couto] got one of these clone component testers, and after playing with it for a while, decided to hack it and write a T-Rex runner game for it.

The T-Rex runner game is Chrome’s offering for you to while away your time when it can’t connect to the internet. It needs just one button to play. This is just the kind of simple game that can be easily ported to the Component Tester. The nice take away from [Robson]’s blog post is not that he wrote a simple game for an ATmega connected to an LCD display, but the detailed walk through he provides of the process which can be useful to anyone else wanting to dip their feet in the world of writing games.

After a bit of online sleuthing and some multimeter testing, he was able to figure out that the LCD controller chip was connected to Port D of the ATmega, which meant the use of software SPI via bit-banging. He then looked inside the disassembled firmware to find writes to Port D to figure out pin assignments. Of course not long after all this work he found a config.h file with the pin mappings.

Armed with this information he was able to use the Adafruit ST7565 library to drive the LCD, but not before having to flip the image. The modified fork of his ST7565 library is available on GitHub. His game code is also available, but reading through the development process is pretty interesting. Check out a video of the Runner game in action after the break.

In an earlier post, we did a product review of one of these cheap Transistor Testers, and if you have one of these lying around, give [Robson]’s game a spin — it could be handy while you wait for your reflow oven to finish its soldering cycle.

Continue reading “T-Rex Runner Runs on Transistor Tester”

The Power Glove Ultra Is The Power Glove We Finally Deserve

How do you make the most awesome gaming peripheral ever made even more bad? Give it a 21st-century upgrade! [Alessio Cosenza] calls this mod the Power Glove Ultra, and it works exactly as we imagined it should have all those years ago.

The most noticeable change is the 3D-printed attachment that hosts the Bluetooth module, a combination USB charger and voltage booster, and a Metro Mini(ATmega328) board. On top of a 20-hour battery life, a 9-axis accelerometer, gyroscope, and compass gives the Power Glove Ultra full 360-degree motion tracking and upgrades the functionality of the finger sensors with a custom board and five flex sensor strips with 256 possible positions for far more nuanced input. [Cosenza] has deliberately left the boards and wires exposed for that cyberpunk, retro-future look that is so, so bad.

Continue reading “The Power Glove Ultra Is The Power Glove We Finally Deserve”

Parts Bin Bonanza Leads to Arduino FM Radio

Trolling eBay for parts can be bad for your wallet and your parts bin. Yes, it’s nice to be well stocked, but eventually you get to critical mass and things start to take on a life of their own.

This unconventional Arduino-based FM receiver is the result of one such inventory overflow, and even though it may take the long way around to listening to NPR, [Kevin Darrah]’s build has some great tips in it for other projects. Still in the mess-o-wires phase, the radio is centered around an ATmega328 talking to a TEA5767 FM radio module over I²C. Tuning is accomplished by a 10-turn vernier pot with an analog meter for frequency display. A 15-Watt amp drives a pair of speakers, but [Kevin] ran into some quality control issues with the amp and tuner modules that required a little extra soldering as a workaround. The longish video below offers a complete tutorial on the hardware and software and shows the radio in action.

We like the unconventional UI for this one, but a more traditional tuning method using the same guts is also possible, as this retro-radio refit shows.

Continue reading “Parts Bin Bonanza Leads to Arduino FM Radio”

Hackaday Links: November 6, 2016

Here’s a life protip for you: get really, really good at one video game. Not all of them; you only want to be good – top 10% at least – at one video game. For me, that’s Galaga. It’s a great arcade game, and now it’s IoT. [justin] has been working on publishing high scores from a Galaga board to the Internet. The electronics are actually pretty simple – just a latch on a memory address, and an ESP8266 for comms.

On with the mergers and acquisitions! Lattice has been sold to Canyon Bridge, a Chinese private equity firm, for $1.3 Billion. Readers of Hackaday should know Lattice as the creators of the iCE40 FPGA platform, famously the target of the only Open Source FPGA toolchain.

The Internet of Chocolate Chip Cookies. Yes, it’s a Kickstarter for a cookie machine, because buying a tube of pre-made cookie dough is too hard. There is one quote I would like to point out in this Kickstarter: “Carbon Fiber Convection Heating Element (1300W) is more energy-efficient than traditional electric elements and heats up instantly.” Can someone please explain how a heating element can be more efficient? What does that mean? Aren’t all resistive heating elements 100% efficient by default? Or are they 0% efficient? The Internet of Cookies broke my brain.

The USB Rubber Ducky is a thumb-drive sized device that, when plugged into a computer, presents itself as a USB HID keyboard, opens up a CLI, inputs a few commands, and could potentially do evil stuff. The USB Rubber Ducky costs $45, a Raspberry Pi Zero and a USB connector costs $6. [tim] built his own USB Rubber Ducky, and the results are great.

MicroLisp, Lisp For The AVR

We’ve seen tiny microcontroller-based computers before, but nothing like this. Where the usual AVR + display + serial connection features BASIC, Forth, or another forgotten language from the annals of computer history, this project turns an AVR into a Lisp machine.

The μλ project is the product of several decades of playing with Lisp on the university mainframe, finding a Lisp interpreter for the 6800 in Byte, and writing a few lisp applications using the Macintosh Toolbox. While this experience gave the author a handle on Lisp running on memory-constrained systems, MicroLisp is running on an ATMega328 with 32k of Flash and 2k of RAM.  In that tiny space, this tiny computer can blink a few boards, write to an OLED display, and read a PS/2 keyboard.

The circuit is simple enough to fit on a breadboard, but the real trick here is the firmware. A large subset of Lisp is supported, as is analog and digitalRead, analog and digitalWrite, I2C, SPI, and a serial interface. It’s an amazing piece of work that’s just begging to be slapped together on a piece of perfboard, if only to have a pocket-sized Lisp machine.

Thanks [gir] for the tip.