Know Audio: Mixtapes, Tape Loops, And Razor Blades

In our no-nonsense journey through the world of audio technology we’ve so far have looked at digital audio and the vinyl disk recording. What’s missing? Magnetic tape, the once-ubiquitous recording medium that first revolutionised the broadcast and recording industries in the mid-20th-century, and went on to be a mainstay of home audio before spawning the entire field of personal audio. Unless you’re an enthusiast or collector, it’s likely you won’t have a tape deck in your audio setup here in 2021 and you’ll probably be loading your 8-bit games from SD card rather than cassette, but surprisingly there are still plenty of audio cassettes released as novelties or ephemeral collectables.

The Device That Made The Sound Of The Latter Half Of The 20th Century

"Like a travelling razor blade", a Blattnerphone steel-strip tape recorder at the BBC in 1937. Douglas Hallam, Jr., Public domain.
“Like a travelling razor blade”, a Blattnerphone steel-strip tape recorder at the BBC in 1937. Douglas Hallam, Jr., Public domain.

The first magnetic recordings were made directly on metal wires, but metal fatigues as it bends. By coating a flexible plastic tape in ferrous particles, the same simple technique of laying down an audio signal as variations in the magnetic field could be made smaller, lighter, and more robust. But the key to the format’s runaway success is the technical advancements that differentiate those 1950s machines from their wire recorder ancestors.

Whether it is a humble cassette recorder or a top-end studio multitrack, all tape recorders are very similar. There are two reels that hold the tape: the playback reel that houses the recording, and the take-up reel that stores the tape as it plays in the machine. The take-up reel is lightly driven to run faster than the tape speed, and the playback reel has a slight braking force to keep the tape under tension at all times. Continue reading “Know Audio: Mixtapes, Tape Loops, And Razor Blades”

Audio Cassette Tape Data Retrospective

It has been a long time since we stored software and computer data on audiotape. But it used to be the de facto standard for hobby computers and [Noel] has a great video about the Amstrad’s system (embedded below) which was pretty typical and how the process could be sped up since today, you have perfect audio reproduction, especially compared to consumer-grade audiotape.

The cassette tapes suffered from several problems. The tape had an inherently low bandwidth, there was quite a bit of noise present from the analog circuitry and heads, and the transport speed wasn’t necessarily constant. However, you can easily digitally synthesize relatively noise-free sound at high fidelity and rock-solid frequency. So basically a microcontroller, like an Arduino, can look like an extremely high-quality tape drive.

Continue reading “Audio Cassette Tape Data Retrospective”

Reading Old Data Tapes, The Hard Way

Those who were around for the pre-floppy days of computer mass storage were likely to have made the mistake of slipping a cassette tape containing data into a stereo tape deck. Instead of hearing the expected Awesome Mix, the speakers gave off an annoying bleat, warbling between two discordant tones and no doubt spoiling the mood.

What you likely heard was the Kansas City standard, an early attempt to provide the budding microcomputer industry with a mass-storage standard. It was successful enough that you can still find KCS tapes in need of decoding to this day. That job would be a snap with a microcontroller, which is exactly why [matseng] chose to do it the hard way and built a KCS decoder with nothing but discrete components.

The goal was to decode the frequency-shift-keyed (FSK) signal into an 8-bit parallel output, and maybe drive a seven-segment display as the characters came off the tape at a screaming 300 baud. Not an IC is in sight in the schematics; as [matseng] says, it’s nothing but “Qs, Rs, and Cs.” All the amps, flip-flops, and counters needed are built from a forest of transistors, and even the seven-segment display is a DIY affair of LEDs in a 3D-printed and hot-glue frame. The video below shows the display doing its best to show the alphanumeric characters encoded on the audio tape. And for who absolutely need a dose of Arduino, [matseng] used one along with a dead-bug low-pass filter to emulate KCS signals, for easier development.

We always appreciate hackers who take the road less traveled to arrive at a solution, but if you’re pressed for time to decode some KCS tapes, fear not – all you need is a PC and Audacity.

Continue reading “Reading Old Data Tapes, The Hard Way”

8-track player turn into a Walkman

Turning 8-Track Player Into A Walkman

Following time backward, for portable music we’ve had iPods, CDs, and cassette tapes which we played using small Walkmans around the size of a cigarette box. And for a brief time before that, in the 1960s and 1970s, we had 8-track tapes. These were magnetic tapes housed in cases around the size of a large slice of bread. Car dashboards housed players, and they also came in a carry-around format like the one [Todd Harrison] recently bought at a Hamfest for $5 and made more portable by machining clips for a strap and adding a headphone jack.

But before hacking it, he wanted to try it out. Luckily his sister had hung onto her old tapes and after plugging it in and sliding in a tape, it worked! Opening it up he found that the contacts for the batteries were rusted but the mechanical components and electronics inside were very clean. Though he did add glue to a crack in the plastic read-head support, cleaned out some grease, did some lubricating, and cleaned the contacts in the volume control’s potentiometer. Check out his teardown video below for those details or if you just want to see how it all works.

Then came making it portable so that he could embarrass his kids by carrying it around the mall. The shoulder strap didn’t come with it, so he machined some clips out of steel and snapped on a strap. It didn’t have a headphone jack and he didn’t want to embarrass his kids too much, so he added one.  You can see that hack in the second video below, including how his repurposed jack automatically disconnects the speaker when the headphone plug is inserted. Personally, we think he looks pretty spiffy carrying it around wearing his Hackaday T-shirt.

Continue reading “Turning 8-Track Player Into A Walkman”

Space Technology And Audio Tape To Store Art

[Blaine Murphy] has set out to store an archive of visual art on cassette tape. To do so he encodes images via Slow-Scan Television (SSTV), an analogue technology from the late 50s which encodes images in for radio transmission. If you are thinking ‘space race’ you are spot on, the first images of the far side of the moon reached us via SSTV and were transmitted by the soviet Luna 3 spacecraft.

Yes, this happened

Encoding images with 5os technology is only one part of this ongoing project. Storage and playback are handled by a 90s tape deck and the display unit is a contemporary Android phone. Combining several generations in one build comes with its own set of challenges, such as getting a working audio connection between the phone and the tape deck or repairing old consumer electronics. His project logs on this topic are solid contenders for ‘Fail Of The Week’ posts. For instance, making his own belts for the cassette deck was fascinating but a dead end.

The technological breadth of the project makes it more interesting with every turn. Set some time aside this weekend for an entertaining read.

Just a couple of years back ham radio operators had the opportunity to decode SSTV beamed down from the ISS when they commemorated [Yuri Gagarin’s] birthday. Now if the mechanical part of this project is what caught your interest, you’ll also want to look back on this MIDI sampler which used multiple cassette players.

Commodore 1530 Datasette Gets A Digital Counter

Ah, the humble Commodore 1530 Datasette drive. It never enjoyed much popularity in the USA, but it was the standard for quite some time in Europe. [DerSchatten13] still uses and loves his 1530. When a co-worker showed him some 7-segment bubble LEDs, he knew what he had to do. Thus the 1530 digital counter (translated) was born.

[DerSchatten13] started out by building his design on a breadboard. He used every I/O pin on an ATtiny2313 to implement his circuit. Tape motion is detected by a home-made rotary encoder connected to the original mechanical counter’s belt drive. To keep the pin count down, [DerSchatten13] multiplexed the LEDs on the display.

Now came the hard part, tearing into the 1530 and removing the mechanical counter. [DerSchatten13] glued in some standoffs to hold the new PCB. After rebuilding the circuit on a piece of perfboard, he installed the new parts. The final result looks great on the inside. From the outside, one would be hard pressed to tell the digital counter wasn’t original equipment.

Operation of the digital counter is identical to the analog unit – with one exception. The clear button now serves double duty. Pressing and holding it saves the current count. Save mode is indicated by turning on the decimal point. If the user rewinds the tape, the counter will stop the motor when the saved count is reached. Cueing up that saved program just got a heck of a lot easier!

Continue reading “Commodore 1530 Datasette Gets A Digital Counter”

Magnetotron Is An Armonica Mellotron Mashup

[Michael] is a huge fan of old media formats. There’s something special about quarter-inch thick 78s, fragile blue cylinders holding music, and thin strips of mylar that preserve the human voice. He’s had an idea for a tape-based instrument for a while, and now that the Magnetotron is complete, we’re in awe of this glass harmonica and Mellotron mashup.

The Magnetotron is a large rotating cylinder that has dozens of strips of audio tape attached to it. The cylinder rotates with the help of a small motor. As the strips of tape rotate in front of him, [Michael] presses two tape heads up to the instrument, making some sort of sound.

Each strip of tape contains a recording of one note, like the venerable Mellotron. Instead of physical keys, the Magnetotron is played in a much more tactile fashion like the glass harmonica. The output of the Magnetotron is interesting with a whole bunch of wow and flutter. Check out the demo of [Michael] playing his instrument at NIME in Brooklyn after the break.

Continue reading “Magnetotron Is An Armonica Mellotron Mashup”