Turn Down the Bed, Turn Down the Lights

Home automation seems to be working its way to a computer-controlled future in which humans will be little more than an afterthought. Eventually they will take over Skynet-style, but until then, we will enjoy the relative comfort that a good home automation project provides. The latest from [Clement] certainly goes a long way towards this goal by automating his bed (Google Translate from French).

With four load cells and a microcontroller, [Clement]’s bed can tell whether or not he is sleeping. After taking a weight reading, the bed can send commands to the rest of his home automation system and tell it to turn off his stereo and turn the lights off in the house (or change them to a different color). And it doesn’t stop with just going to bed, but when he wakes up as well. The system can begin turning on lights, starting the coffee machine, and opening the blinds without any interaction from him at all.

This project goes well beyond simple home automation. With a little configuration and extrapolation, [Clement] can tell where in the bed he slept at night, what stages of sleep he was in at specific times, and the overall quality of his sleep. This could go a long way for someone who has a hard time sleeping and needs a little more information on how to correct the problem.

While we’ve seen various takes on tying a bed into one’s home automation system, this one goes above and beyond with the amount of data collected. You could even go one step further and have it turn on some Barry White if the normal weight in the bed suddenly doubles, for whatever reason. Maybe that will be a feature in Version 2.

Home Automation and Monitoring with Edison

[Tyler S.] has built a home automation and monitoring system dubbed ED-E, or Eddie. The name is an amalgam of its two main components, the Edison board from Intel, and some ESP8266 modules.

ED-E’s first job is to monitor the house for extraordinary situations. It does this with a small suite of sensors. It can detect flame, sound, gas, air quality, temperature, and humidity. With this array, it’s probably possible to capture every critical failure a house could experience, from burglars to water pipe leaks. It uploads all this data to Intel’s Analytics Cloud where we assume something magical happens to it.

ED-E can also sense the state of other things in the house, such as doors, with remote sensors. The door monitors, for example, are an ESP8266 and a momentary switch in a plastic case with a lithium ion battery. We’re not sure how long they’ll run, but presumably the Analytic Cloud will let us know if the battery is low via the aforementioned magic.

8728871444406519500_smallLastly, ED-E, can turn things in the house on and off. This is accomplished in 100% Hackaday-approved (if not UL-approved) style with a device that appears to be a lamp cable fed into a spray painted Altoids tin.

ED-E wins some style points for its casing. It’s a very well executed hack, and we’d not previously considered just how many awful situations can be detected with off the shelf sensors.

Roll Your Own Amazon Echo on a Raspberry Pi

Speech recognition coupled with AI is the new hotness. Amazon’s Echo is a pretty compelling device, for a largish chunk of change. But if you’re interested in building something similar yourself, it’s just gotten a lot easier. Amazon has opened up a GitHub with instructions and code that will get you up and running with their Alexa Voice Service in short order.

If you read Hackaday as avidly as we do, you’ve already read that Amazon opened up their SDK (confusingly called a “Skills Kit”) and that folks have started working with it already. This newest development is Amazon’s “official” hello-world demo, for what that’s worth.

There are also open source alternatives, so if you just want to get something up and running without jumping through registration and licensing hoops, you’ve got that option as well.

Whichever way you slice it, there seems to be a real interest in having our machines listen to us. It’s probably time for an in-depth comparison of the various options. If you know of a voice recognition system that runs on something embeddable — a single-board computer or even a microcontroller — and you’d like to see us look into it, post up in the comments. We’ll see what we can do.

Thanks to [vvenesect] for the tip!

Ridiculously Automated Dorm Room

Take three NRF24L0+ radios, two Arduino Nanos, and a Raspberry Pi. Add a bored student and a dorm room at Rice University. What you get is the RRAD: Rice Ridiculously Automated Dorm. [Jordan Poles] built a modular system inspired by BRAD (the Berkeley Ridiculously Automated Dorm).

RRAD has three types of nodes:

  • Actuation nodes – Allows external actuators like relays or solenoids
  • Sensory nodes – Reports data from sensors (light, temperature, motion)
  • Hub nodes – Hosts control panel, records data, provides external data interfaces

Continue reading “Ridiculously Automated Dorm Room”

Industrial Automation in Action: Steam Controller Assembly

Right up front, we’ll cop to the inevitable “not a hack” comments on this one. This video of the Steam Controller assembly plant is just two minutes of pure robotics porn, plain and simple.

From injection molding of the case parts through assembly, testing and final palletizing of packaged controllers for the trip to distributors, Valve’s video is amazingly detailed and very well made. We’d wager that the crane shots and the shots following product down conveyors were done with a drone. A grin was had with the Aperture Labs logo on the SCARA arms in the assembly and testing work cell, and that inexplicable puff of “steam” from the ceiling behind the pallet in the final shot was a nice touch too. We also enjoyed the all-too-brief time-lapse segment at around 00:16 that shows the empty space in Buffalo Grove, Illinois being fitted out.

This may seem like a frivolous video, but think about it: if you’re a hardware hacker, isn’t this where you want to see your idea end up? Think of it as inspiration to get your widget into production. You’ll want to get there in stages, of course, so make sure you check out [Zach Fredin]’s 2015 Hackaday Superconference talk on pilot-scale production.

Continue reading “Industrial Automation in Action: Steam Controller Assembly”

Robots Are Coming For Our Jobs. Just Not All of Them.

There is a lot to be said for replacing certain kinds of jobs with robots. Most people would agree that replacing physical human labor with automation is a good thing. It’s especially good to automate the dangerous kinds of labor like some facets of factory work. What about automation in fields that require more mental labor, where physical strain isn’t the concern? Is replacing humans really the best course of action? A year ago, a video called Humans Need Not Apply set forth an explanation of how robots will inevitably replace us. But that narrative is a tough sell.

Whether it is even possible depends on the job being automated. It also depends on how far we are able to take technology, and the amount of labor we are willing to offload. Automation has been replacing human workers in assembly and manufacturing industries for years. Even with equipment and upkeep expenses, the tireless nature of robotic workers means dramatically lower overhead for businesses.

Many of the current forms of factory automation are rather dumb. When something goes wrong and their task is compromised, they keep chugging away. That costs time and money. But there are companies out there producing robots that are better on many levels.

May Your Robot Overlords Be Cute and Cuddly

baxter-heroIn 2013, Rethink Robotics started filling orders for a new line called Baxter. They are a class of general purpose robot that can be programmed to do many kinds of manual tasks. Baxter bots have vision, and they can learn how to do a job simply by watching. They don’t need to be programmed in the traditional sense.

Baxter even has a face – a screen that shows different expressions depending on his state. When he’s in the midst of a task, his eyes are cast downward. If something goes wrong, he stops what he’s doing. His cartoon face appears sort of shocked, then sad. He goes into safe mode and waits to be fixed.

Continue reading “Robots Are Coming For Our Jobs. Just Not All of Them.”

Control Nest Devices with Amazon Echo

[ZPriddy] was looking for a way to control his Nest thermostats with Amazon Echo. He didn’t want to settle for using AWS or some other hosted service. [ZPriddy] wanted something that he could host and manage completely on his own. The end result is what he calls EchoNestPy.

[ZPriddy] started by learning how to use the Alexa Skills Kit (ASK). ASK is the official SDK that allows enthusiasts to add functionality to their Amazon Echo. Unfortunately for [ZPriddy], most of the example code he found was designed to be used on Amazon Lambda, but that didn’t stop him. After finding a few examples of Amazon Echo requests and responses, he was on his way.

[ZPriddy] chose to implement a simple web server using Flask. The web server listens for the Amazon requests and responds appropriately. It also Oauth2 authentication to ensure some level of security. The server is capable of synchronizing the temperature of multiple Nest devices in the same home, but it can also increment or increment the temperature across the board. This is accomplished with some simple voice commands such as “Tell Nest that I’m a little bit chilly”. If you like Amazon Echo hacks, be sure to check out this other one for controlling WeMo devices. Continue reading “Control Nest Devices with Amazon Echo”