Flat Earth Theatre presents "R.U.R." by Karel Capek. January 23 - 31, 2009. Featuring Michael Wayne Smith, Karen Hart, Valerie Daum, Jeff Tidwell, Kevin Kordis, James Rossi, Bill Conley, Justus Perry, and Amy Lehrmitt. Directed by Jake Scaltreto. Arsenal Center for the Arts, Watertown.

Robot: You Keep Using That Word But It Doesn’t Mean What You Think It Means

The flute player automaton by Innocenzo Manzetti (1840)
The flute player automaton by Innocenzo Manzetti (1840)

With many words which are commonly used in everyday vocabulary, we are certain that we have a solid grasp of what they do and do not mean, but is this really true? Take the word ‘robot’ for example, which is more commonly used wrongly rather than correctly when going by the definition of the person who coined it: [Karel Čapek]. It was the year 1920 when his play Rossumovi Univerzální Roboti was introduced to the world, which soon saw itself translated and performed around the world, with the English-speaking world knowing it as R.U.R.: Rossum’s Universal Robots.

Up till then, the concept of a relatively self-operating machine was known as an automaton, as introduced by the Ancient Greeks, with the term ‘android’ being introduced as early as the 18th century to mean automatons that have a human-like appearance, but are still mechanical contraptions. When [Čapek] wrote his play, he did not intend to have non-human characters that were like these androids, but rather pure artificial life: biochemical systems much like humans, using similar biochemical principles as proteins, enzymes, hormones and vitamins, assembled from organic matter like humans. These non-human characters he called ‘roboti’, from Old Czech ‘robot’ (robota: “drudgery, servitude”), who looked human, but lacked a ‘soul’.

Despite this intent, the run-away success of R.U.R. led to anything android- and automaton-like being referred to as a ‘robot’, which he lamented in a 1935 column in Lidové Noviny. Rather than whirring and clunking pieces of machinery being called ‘automatons’ and ‘androids’ as they had been for hundreds of years, now his vision of artificial life had effectively been wiped out. Despite this, to this day we can still see the traces of the proper terms, for example when we talk about ‘automation’, which is where automatons (‘industrial robots’) come into play, like the industrial looms and kin that heralded the Industrial Revolution.

(Heading image: Performance of R.U.R. by Flat Earth Theatre, showing the mixing of robot ingredients)

A long, skeletal neck of a swan automaton sits on a table. Two men are on either side of it, lowering the swan's body back on.

Restoring The Silver Swan Automaton

It’s easier than ever to build your own robot, but humans have been building automatons since before anyone had even thought of electronics. One beautiful example is the Silver Swan, built in the 18th century.

The brainchild of [John Joseph Merlin] and silversmith [James Cox], the swan features three separate clockwork drives, appearing to swim in a moving river where it snatches fish in its motorized beak. Mark Twain said the swan had “a living grace about his movements and living intelligence in his eyes” when he saw it at the International Exhibition in Paris in 1867.

The swan has been delighting people for 250 years, and recently received some much-deserved maintenance. In the video below, you can see museum staff disassembling the swan including its 113 neck rings which protect the three different chain drives controlling its lifelike motions. Hopefully, with some maintenance, this automaton will still be going strong in 2273.

If you’d like to Bring Back the Age of Automatons, perhaps you should study this bird bath or the “Draughtsman-Writer.”

Continue reading “Restoring The Silver Swan Automaton”

The Chess Computer From 1912

Who was [Leonardo Torres Quevedo]? Not exactly a household name, but as [IEEE Spectrum] points out, he invented a chess automaton in 1920 that would foreshadow the next century’s obsession with computers playing chess.

Don’t confuse this with the infamous Mechanical Turk, which appeared to be a chess computer but was really a guy hiding inside a fake chess computer. The Spanish engineer’s machine really did play a modified end game. The chessboard was vertical, and pegs represented pieces. There were mechanical arms to move the pegs. The device actually dates back to 1912, with a public demonstration in Paris in 1914. Given [Quevedo’s] native language, the machine was called El Ajedrecista.

Continue reading “The Chess Computer From 1912”

The Most Ornate Birdbath You’ve Ever Seen

When one thinks of art, a birdbath may not be the first thing that comes to mind. However, there is no denying that the La Fontaine aux Oiseaux (The Bird Fountain) is a true work of art. This automaton, created by automaton maker [François Junod] in collaboration with 20 different workshops and craftsmen, represents thousands of hours of work and boasts a complex beauty that is both visible and hidden.The finished Bird Fountain, with all it's jewel encrusted exterior pieces

Commissioned by the Van Cleef & Arpels jewelry company, this purely mechanical display piece features a pair of jewel-encrusted birds that perform a little routine around the edge of the bath every hour. All the birds’ appendages move while bird song is added with the help of a whistle and bellows. The “water” is also mechanized, with a series of metal plates moving together to create ripple effects, while a water lily opens and closes and a dragonfly flutters above the surface.

The overall effect of this ridiculously over-the-top mechanical art piece is absolutely mesmerizing. Even if the bejeweled exterior isn’t quite your style, you can still appreciate its intricate workings thanks the video after the break giving us a peek at the development.

We’ve featured some of [François]’ other work before, which is equally impressive and displays the mechanics in all it’s glory. If you want to try your hand at making automatons, 3D printing is the perfect way to get started.

Continue reading “The Most Ornate Birdbath You’ve Ever Seen”

A 3D-printed mechanical system that moves weather symbols around

3D Printed Mechanical Contraption Shows Live Weather Forecast

“What’s the weather going to be like today?” is a question that’s near-permanently on the mind of those living in places like Britain, where brilliant sunshine can follow thick clouds, only to turn into drizzle an hour later. Nowadays you simply need to glance at your phone to know whether you need to pack an umbrella, but where’s the fun in that? Why not have a huge mechanical display to show you a summary of today’s weather?

As a fan of automatons and other contraptions filled with gears and pulleys, [Mike] decided to build just such a machine for his latest Mikey Makes video. It uses brightly coloured indicators inspired by the BBC’s famous “fluffy cloud” symbols that can show various combinations of sunshine, clouds, rain and snow. These symbols are moved around by dozens of gears, levers, swinging arms and other moving parts which were all 3D printed. We especially like the system that folds out rays of sunshine from behind the cloud; you can see it working in the video embedded below.

Live weather data is fetched through an open weather API by an Arduino MKR WiFi 1010. This then drives the mechanical system through a pair of motor driver ICs. The heavy work is performed by stepper motors and servos, while micro-switches and optical detectors determine the end point of each movement.

If you’re into weather displays, you’re in luck: we’ve featured many different styles over the years, including e-paper screens, analog gauges, split-flap displays and even a miniature recreation of the local weather.

Continue reading “3D Printed Mechanical Contraption Shows Live Weather Forecast”

The Incredible Mechanical Artistry Of François Junod

The art of building purely mechanical automatons has dramatically declined with the arrival of electronics over the past century, but there are still a few craftsmen who keep the art form alive. [François Junod] is one of these masters, and the craftsmanship and intricacy on display in his automata is absolutely amazing.

[François]’ creations are all completely devoid of electronics, and are powered either by wound-up springs or weights. The mechanics of the automata are part of the display, and contain a vast array of gears, linkages, belts and tracks. Many of them also include their own soundtrack, which range from simple bells and chimes to complete melodies from mechanized wind instruments, as demonstrated in Le Champignonneur below. He also collaborates with craftsman like jewelers on works like La Fée Ondine, which we thought was CGI when we first saw it in the video after the break.

Very few people have the time, skill and patience to make these creations, but we are glad there are still a few around. Some builds, like [Patelo]’s flightless drone aren’t quite as complex, but are no less inspiring. If you don’t quite have the time and fabrication skills, you can still create mesmerizing automatons with 3D printing like [gzumwalt]. Continue reading “The Incredible Mechanical Artistry Of François Junod”

Mechanical 7-Segment Display Uses A Single Motor

Seven-segment displays have been around for a long time, and there is a seemingly endless number of ways to build them. The latest of is a mechanical seven-segment from a master of 3D printed mechanisms, [gzumwalt], and can use a single motor to cycle through all ten possible numbers.

The trick lies in a synchronized pair of rotating discs, one for the top four segments and another for the bottom three segments. Each disc has a series of concentric cam slots to drive followers that flip the red segments in and out of view. The display can cycle through all ten states in a single rotation of the discs, so the cam paths are divided in 36° increments. [gzumwalt] has shown us a completed physical version, but judging by CAD design and working prototype of a single segment, we are pretty confident it will. While it’s not shown in the design, we suspect it will be driven by a stepper motors and synchronized with a belt or intermediate gear.

Another 3D printed mechanical display we’ve seen recently is a DIY flip dot, array, which uses the same electromagnet system as the commercial versions. [gzumwalt] has a gift for designing fascinating mechanical automatons around a single motor, including an edge avoiding robot and a magnetic fridge crawler.

Continue reading “Mechanical 7-Segment Display Uses A Single Motor”