Arduino rover doubles up on obstacle avoidance

[Eduard Ros] wrote in show off his first attempt at building an autonomous rover (translated). As with many of these projects, he started with the base of a remote control toy truck. This solves so many mechanical issues, like steering, locomotion, and power source.

He just needed a way to control the vehicle. The recent LayerOne badge hacks either did this through the wireless controller protocol or by adding an Arduino directly to the vehicle. [Eduard] chose the latter, and also included obstacle avoidance sensors in the process. We’ve seen quite a few that use these ultrasonic rangefinders. He decided to go a different route by adding two of them rather than scanning by mounting one on a servo motor.

The video after the break shows the vehicle successfully navigating through a tight space. This makes us wonder how much data can be processed from the stationary sensors? We’re not familiar with how wide the horizontal sensitivity is on the devices. If you have some insight, please share you knowledge in the comments section.

Continue reading “Arduino rover doubles up on obstacle avoidance”

Self-stabilizing autonomous bicycle

For [Gunnar]’s diploma thesis, he wanted to build an autonomous bicycle. There’s an obvious problem with this idea, though: how, exactly does a robotic bicycle stand upright? His solution to balancing the bicycle was a reaction wheel that keeps the bicycle upright at all times.

A bicycle is basically an inverted pendulum; something we’ve seen controlled in a number of projects. To balance his driver-less bike, [Gunnar] used a stabilizing wheel and an IMU to make sure the bicycle is always in the upright position. The bike measure the tilt and angular velocity of itself, along with the speed of the stabilizing wheel. To correct a tilt to the left, the stabilizing wheel spins clockwise, and corrects a rightward tilt by spinning counterclockwise.

While [Gunnar]’s solution of a bike wheel used as a gyroscope is clever – it uses common bicycle wheel, hugely reducing costs if someone wants to replicate this project – there’s not a whole lot of ground clearance. The size of the stabilizing wheel could probably be reduced by replacing the 7.4 kg steel wheel with a Tungsten, Osmium, or Lead disk, possibly becoming so small it could fit inside the frame. Still, though, a very nice build that is sure to turn a few heads.

Continue reading “Self-stabilizing autonomous bicycle”

The Pirate Bay aims for the clouds…literally


There is no shortage of government and entertainment-related agencies chomping at the bit to shut down the Pirate Bay for good. While the group has not suffered a permanent service ending raid like [Kim Dotcom] and the Megaupload crew, they are always thinking up novel ways to ensure that the site can endure whatever law enforcement throws at them.

In a recent blog post, representatives from the group unveiled plans to put their front line servers in the clouds, courtesy of custom-made autonomous drones called “Low Orbit Server Stations.” The project is in its infancy, but the general idea is to mount small computers like the Raspberry Pi on GPS-controlled drones kept aloft 24×7 (presumably) using solar energy. These drones would communicate with clients on the ground via radio transmitters which they state can provide a “100Mbps node up to 50km away”.

Calling the claims grandiose would be an understatement, but then again the Pirate Bay has proven to be a difficult organization to quash in any substantial way, so only time will tell.

[via The Daily What – Thanks, roboman2444]

[Vijay Kumar’s] TED talk on the state of quadcopter research

[Vijay Kumar] is a professor at the University of Pennsylvania and the director of the GRASP lab where research centering around autonomous quadcopters is being met with great success. If you were intrigued by the video demonstrations seen over the last few years, you won’t want to miss the TED talk [Dr. Kumar] recently gave on the program’s research. We touched on this the other week when we featured a swarm of the robots in a music video, but there’s a lot more to be learned about what this type of swarm coordination means moving forward.

We’re always wondering where this technology will go since all of the experiments we’ve seen depend on an array of high-speed cameras to give positional feedback to each bot in the swarm. The image above is a screenshot taken about twelve minutes into the TED talk video (embedded after the break). Here [Dr. Kumar] addresses the issue of moving beyond those cameras. The quadcopter shown on the projection screen is one possible solution. It carries a Kinect depth camera and laser rangefinder. This is a mapping robot that is designed to enter an unknown structure and create a 3D model of the environment.

The benefits of this information are obvious, but this raises one other possibility in our minds. Since the robots are designed to function as an autonomous swarm, could they all be outfitted with cameras, and make up the positional-feedback grid for one another? Let us know what you think about it in the comments section.

Continue reading “[Vijay Kumar’s] TED talk on the state of quadcopter research”

Quadrotor squadron plays the [James Bond] theme song in preparation for world domination


If you weren’t already a big fan of quadrotors by this point, we’re pretty sure the video below will get you on the bandwagon in no time flat.

The video was debuted this past week at the TED2012 conference, giving [Daniel Mellinger, Alex Kushleyev, and Vijay Kumar] from the University of Pennsylvania GRASP Lab, a chance to show off their amazing robotics work. The team used a set of autonomous quadrotors to play the [James Bond] theme, complete with keyboard, drums, cymbals, guitar, and maracas.

The coordination of the robots undoubtedly took an incredible amount of time to orchestrate, but after watching the video we think it is well worth the effort. Now of course you can’t simply input a piece of sheet music into the quadrotor control system and expect them to play it, but we imagine that time will arrive before you know it!

Continue reading to see the [James Bond] theme song in full, and be sure to swing by the U Penn site to read more about the project.

Thanks to everyone who sent this one in!

Continue reading “Quadrotor squadron plays the [James Bond] theme song in preparation for world domination”

Autonomous metal detector lets you sit back, get rich


As a kid, metal detectors seemed like great fun. Every commercial I saw beckoned with tales of buried treasure “right in my own back yard” – a bounty hard for any kid to pass up. In reality, the process was both time consuming and tedious, with little reward to be had. [Gareth] liked the idea of scouring the Earth with a metal detector, but he liked sitting and relaxing even more. He decided he could easily partake in both activities if he built himself an autonomous metal detecting robot.

He stripped down a hand held metal detector, and installed the important bits on to the front of an R/C chassis. An Arduino controls the entire rig via a motor shield, allowing it to drive and steer the vehicle while simultaneously sweeping the metal detector over the ground. He fitted the top of the rover with a camera for remotely watching the action from the comfort of his patio, along with a laser which lets him pinpoint the location of his new found goods.

Continue reading to see a short video of the robot in action, and be sure to check out his site for more build details.

Continue reading “Autonomous metal detector lets you sit back, get rich”

Robotic farming means more corn for everyone

You know we’re all going to starve, right? If the world’s population keeps growing exponentially and food production grows linearly, we’re eventually going to find out what Soylent Green is made of. This is where [David Dorhout]’s Prospero robot farmer comes in. [David] has come up with the idea of using small autonomous robots to plant, tend and harvest fields. Right now, he’s working on stage 1: planting seeds.

A swarm of six-legged Prospero robots are dispatched to a field. There, each member of the swarm plants seeds one at a time. The robots keep in contact with each other over a wireless connection to ensure the optimal planting pattern for an entire field.

The Prospero prototype is based on the Parallax Propeller with a Ping ultrasonic sensor used to avoid obstacles. Each hexapod is equipped with a bunch of seeds, a small auger, and a supply of fertilizer for the future corn plant. The next step in the plan is to build a ‘tending’ robot that will monitor and apply nutrients if needed. Check out the Prospero video after the break.

Continue reading “Robotic farming means more corn for everyone”