Great Scott! A Flux Capacitor Notification Light

If you are into your social media, then you probably like to stay updated with your notifications. [Gamaral] feels this way but he wasn’t happy with the standard way of checking the website or waiting for his phone to alert him. He wanted something a little more flashy. Something like a flux capacitor notification light. This device won’t send his messages back in time, but it does look cool.

He started with an off-the-shelf flux capacitor USB charger. Normally this device just looks cool when charging your USB devices. [Gamaral] wanted to give himself more control of it. He started by opening up the case and replacing a single surface mount resistor. The replacement component is actually a 3.3V regulator that happens to be a similar form factor as the original resistor. This regulator can now provide steady power to the device itself, as well as a ESP8266 module.

The ESP8266 module has built-in WiFi capabilities for a low price. The board itself is also quite small, making it suitable for this project. [Gamaral] used just two GPIO pins. The first one toggles the flux circuit on and off, and the second keeps track of the current state of the circuit. To actually trigger the change, [gamaral] just connects to the module via TCP and issues a “TIME CIRCUIT ON/OFF” command. The simplicity makes the unit more versatile because an application running on a PC can actually track various social media and flash the unit accordingly.

Nikes With Power Laces, Just in Time for Next Year

With the world’s first hoverboard being shown a few days ago, we’re on the verge of the fabulous world of tomorrow from Back to the Future. Hoverboards are cool, but there’s a wealth of other cool technology from the far-off year of 2015: Mr. Fusions, inflatable pizza, Dustbusters, and of course, Nikes with power laces. [Hunter] just built them, and with the right shoes, to boot.

[Hunter] is using the BttF-inspired Nike Air Mag shoes for this build, along with a few bits of electronics – an Arduino pro mini, a force sensing resistor, and a motor. The build began by carving out a notch in the back of the shoe for the electronics. A small bit of fishing line goes around the shoe, providing the power behind the power laces.

A force sensitive resistor under the heel of the insole tells the microcontroller when a foot is inside the shoe, and a rotary encoder on the motor shaft makes sure all the power lace cycles are the same. It’s not quite the same as the shoe seen on screen – the lower laces can’t be replicated and it’s certainly not as fast as the BttF shoes, but it does work, and as far as shoelaces are concerned, they work well.

Videos below.

Continue reading “Nikes With Power Laces, Just in Time for Next Year”

Oculus Rift and Wii Balance Board make Hoverboards a (Virtual) Reality

It’s almost 2015 and still don’t have the futuristic technology promised to us by Back to the Future Part II. Where are the flying cars, Mr. Fusions, or 19 Jaws movies? Most importantly, where are our hoverboards?

[cratesmith] got tired of waiting around and decided to take matters into his own hands. He combined the Oculus Rift virtual reality headset with the Wii Fit Balance Board to create a virtual hoverboard experience. He used the Unity3D engine (a favorite among Rift developers) to program the game engine. It’s a very rough demo right now, but the game comes complete with a simulated town to float around in and of course includes a model DeLorean.

Before you try to play this demo, you should know that it’s not without its faults. The primary problem [cratesmith] has experienced is with simulation sickness. His virtual reality system has no way to track body motion, which means that leaning back and forth on the Wii Fit board does not get translated to the equivalent virtual movement. The game must assume that the player stands straight up at all times, which is not an intuitive way to control something similar to a skateboard. The result is an off-putting experience that can break immersion and lead to a feeling of nausea.

A possible solution to this problem would be to use a camera style motion detector like the Microsoft Kinect. In fact, another Reddit user has recently posted a teaser video of another hoverboard simulator that uses the Oculus Rift, Wii Fit Board, and Kinect. Not much information is available about this second project, but we look forward to seeing updates in the future.

[createsmith] has not published the code for his demo because it’s still in the very early stages, but he has stated that he’s been giving it out to anyone who goes out of their way to ask. The hoverboard is probably the most coveted fictional technology from the 1989 adventure film. We know this because we’ve seen multiple projects over the years that were inspired by the movie.  We’re excited to see it come to fruition in any form.

[via Reddit]

Sci-Fi Contest Roundup: Thinking 4th Dimensionally

Notwithstanding [John Titor] and his time travelling ’67 Corvette convertible, the coolest time machine on wheels has to be the DeLorean from Back to the Future. BTTF is apparently a very popular theme for our sci-fi contest, with a lot of great entries.

You mean to tell me  you made a time machine? Out of a Hyundai Accent?

fluxAfter a careful bit of research, it appears the Hyundai Accent (GLS) has both a higher top speed and faster 0-60 time than a DeLorean, and that’s before the installation of time circuits, a flux capacitor, and plutonium reactor. [docbrownjr] and [Jennifer] decided their Accent was the perfect vehicle for a time machine conversion and decided to add a Mr. Fusion  to the mix.

Like the on-screen version, this version of a Mr. Fusion is made from a kitchen appliance. With the original Krups coffee grinder out of production, the team settled on an iced tea machine. There will, however, be copious amounts of dry ice involved,  as will half-empty beer cans and banana peels.

WiFi-enabled Flux Capacitor

ledAfter knocking his head on a toilet, [Beamsjr] came up with a great idea – a networked flux capacitor, able to display the Teamcity build progress.

This build is going all out with custom PCBs – one for the controller board, and three for the shift registered LEDs underneath the acrylic knobbies in the flux capacitor. WiFi is provided by the TI CC3000 module, with the main microcontroller being an ATmega 328p,

Time circuits on

segmentsHonestly, we’d be a bit disappointed if this contest didn’t have a BTTF time circuit build entry. Luckily for us, [atheros] and [bwa] are on top of things with their time circuit clock, complete with an alarm and FM radio receiver (FM isn’t going to work in 1955, guys).

Unlike a few other time circuit builds we’ve seen over the years, the guys are doing this one up right, with 14-segment LEDs for the month display. They’re etching their own boards for this one, and it’s looking like it’ll be a very cool project when it’s complete.

It’s Not 2015 Yet But Marty and His Hoverboard Are Already Here!

Okay now this is seriously awesome. [Rodger Cleye] has made a real working Hoverboard.

You guys might remember the recent [Tony Hawk] and [Christopher Lloyd] viral Hoverboard hoax video… Well, this isn’t that. Nope, not even close. It’s real.

The Hoverboard is a quadrotor on steroids — it features four 1200W brushless motors driving 12″ props, a massive 13.4Ah 5S Li-Po battery, and a [Marty McFly] mannequin wearing the classic red vest. He’s counter-balanced [Marty] and the battery around the rotors which makes for a surprisingly smooth flight. It even has a run-time of over 5 minutes, thanks to a whopping 83% efficiency using the 12″ props.

[Rodger] designed and simulated the entire system in eCalc before construction — He had first attempted a bi-copter design, but opted for the tried and true quad-rotor instead. The frame is made of 1/2″ PVC pipe to conserve the mass budget, but altogether it still weighs an unbelievable 20lbs! How close are we to being able to give toddlers the ability to fly?

Just take a look at the following video — we’re seriously impressed.

Continue reading “It’s Not 2015 Yet But Marty and His Hoverboard Are Already Here!”

Adafruit builds the Back to the Future time circuit display

back-to-the-future-time-circuit-clock

If you were growing up in the ’80s this display panel will be instantly recognizable. It’s the time circuit display which [Doc Brown] built into his 88 mph per hour DeLoren time machine. If this still doesn’t jog your memory (or if — *gasp* — you’ve never seen the movie Back to the Future) take a gander at the montage video below.

The thing is, if you look really closely you’ll find this isn’t an exact match. Hackaday alum [Phil Burgess] put together a guide for Adafruit that shows how to build this version. But the movie actually cheated when it came to the month display. In production the month was displayed as alpha characters by painting glass slides. To make that happen here you would need some sixteen segment modules (like in this project). But we don’t mind the change one bit. The nostalgic look stands on its own even if it’s not an exact replica.

We’re sure you’ve figured out by now that this is backed by a dead-accurate real time clock (chronodot) and powered by a Teensy microcontroller board. Which means you can use it for just about any of your timekeeping needs.

Continue reading “Adafruit builds the Back to the Future time circuit display”

Start thinking 4th dimensionally with a time circuit tutorial

When [Phil Burgess] showed off a few I2C – controlled seven-segment displays on adafruit’s weekly vlog, the comments immediately turned to the time circuits featured in everyone’s second-favorite time machine, the Back to the Future DeLorean. The time circuits are now active, so now you can easily add a temporal display to your car well before a hover conversion.

[Phil] used these LED displays, conveniently controlled by a four-wire I2C bus. Although the displays are addressable independently, it’s only possible to assign each display to one of 8 I2C addresses. [Phil] figured out a neat way to control the 9 displays of the time circuit with the help of a 74HC138 3-to-8 line decoder.

The case was constructed out of clear acrylic lasercut in adafruit’s shop and spray painted with faux-metal paint. After installing the seven-segment displays, a Teensy, ChronoDot, and a few AA batteries finished up the build.

With any luck, the design files for the laser cut case should be available shortly, so get those I2C displays while they’re still in stock.