Hackathon Alert: Clean Tech At TVCoG

At Hackaday, we get notified of a lot of the cool events going on in hackerspaces all around the world. We’d like to keep you informed too, just in case there’s something going on in your neighborhood.

So we’re going to start running a weekly column on Saturdays that groups together all of the upcoming week’s exceptional events and noteworthy gatherings. If your hackerspace has something going on, tell us about your event on or around the preceding Wednesday. We’ll see your space in on Hackaday!
Continue reading “Hackathon Alert: Clean Tech At TVCoG”

Converting an Electric Scooter to Lithium Batteries and Disabling the Safeties

There’s a bunch of different electric scooters available nowadays, including those hoverboards that keep catching fire. [TK] had an older Razor E300 that uses lead acid batteries. After getting tired of the low speeds and 12 hour charge times, [TK] decided it was time to swap for lithium batteries.

The new batteries were sourced from a Ryobi drill. Each provides 18 V, giving 36 V in series. The original batteries only ran at 24 V, which caused some issues with the motor controller. It refused to start up with the higher voltage. The solution: disable the safety shutdown relay on the motor controller by bridging it with a wire.

With the voltage issue sorted out, it was time for the current limit to be modified. This motor controller uses a TI TL494 to generate the PWM waveforms that drive a MOSFET to provide variable power to the motor. Cutting the trace to the TL494’s current sense pin removed the current limit all together.

We’re not saying it’s advisable to disable all current and voltage limits on your scooter, but it seems to be working out for [TK]. The $200 scooter now does 28 km/h, up from 22 km/h and charges much faster. With gearing mods, he’s hoping to eke out some more performance.

After the break, the full conversion video.

Continue reading “Converting an Electric Scooter to Lithium Batteries and Disabling the Safeties”

Nanotech Makes Safer Lithium Batteries

Lithium-ion batteries typically contain two electrodes and an electrolyte. Shorting or overcharging the battery makes it generate heat. If the temperature reaches about 300 degrees Fahrenheit (150 degrees Celsius), the electrolyte can catch fire and explode.

spikesThere have been several attempts to make safer lithium-ion cells, but often these safety measures render them unusable after overheating. Stanford University researchers have a new method to protect from overheating cells that uses–what else–nanotechnology graphene. The trick is a thin film of polyethylene that contains tiny nickel spikes coated with graphene (see electron micrograph to the right).

Continue reading “Nanotech Makes Safer Lithium Batteries”

Adding Range (and Bling) to an Electric Skateboard

Long-time Hackaday reader [Andrew Rossignol] bought a Boosted-brand electric skateboard while he was living in NYC. While the batteries more than sufficed for his commute in the Big Apple, he ran out of juice when he moved to the Left Coast, leaving him three miles short of a ten mile trip.

Faced with the unthinkable fate of pushing his skateboard like a Neanderthal, [Andrew] added more batteries. There’s great detail about how he chose the battery chemistry and the particulars of charging and something about load balancing, so it’s definitely worth a read if you’re building an electric vehicle.

IMG_3927But once [Andrew] had some surplus battery capacity on board (tee hee!) he thought of ways to waste it. The natural solution: tons of RGB LED underlighting.

Still not content with an off-the-shelf solution (which wouldn’t let him recharge the batteries without unplugging the lights), he ended up rolling his own with an Arduino and some WS2812s. The nicest touch? Keeping it all out of the elements in a sweet aluminum box, hiding the cable salad within.

There’s a lot to be said for the good industrial design of something like the Boosted skateboard, but if you’d rather DIY, we’ve been covering electric skateboard for a while now. It’s nice to see how battery and motor technology have changed since then, too. Compare and contrast this recent build with that old-school version and with [Andrew’s] build that was covered in this post. We live in good times.

2015 THP Inspiration: Renewable Energy

Most of our energy comes from dead algae or dead ferns right now, and we all know that can’t continue forever. The future is by definition sustainable, and if you’re looking for a project to change the world for this year’s Hackaday Prize, you can’t do better than something to get the world off carbon-based fuels.

mhqyqz7The simplest solar builds can be as fun as a redneck hot tub – a solar thermal water heater repurposed into a heated swimming pool with the help of a pump and JB Weld. You can even build a hose-based version for $100. They can be as useful as a Maximum Power Point Tracking charger for a solar setup – a few bits of electronics that ensure you’re getting the most out of your solar cells. You can, of course, access solar power in a roundabout way with a wind generator built from a washing machine and a 555 timer.

carben-mainGetting energy from the sun is one thing, and putting it to use is another thing entirely. We spend a lot of energy on transportation, and for that there’s a solar power bike, an electric scooter, or a completely open source electric car.

Building the machines that make sustainable energy possible or even just the tools that will let us use all that energy are just a few ideas that would make great entries for The Hackaday Prize. You could go another direction and build the tools that will build and maintain these devices, like figuring out a way to keep these batteries and generators out of the landfill. Any way you look at it, anything that actually matters  would make a great entry to The Hackaday Prize.

PeriUSBoost: A DIY USB Battery Pack

If you travel often, use your mobile devices a lot, or run questionable ROMs on your phone, you likely have an external USB battery pack. These handy devices let you give a phone, tablet, or USB powered air humidifier (yes, those exist) some extra juice.

[Pedro]’s PeriUSBoost is a DIY phone charging solution. It’s a switching regulator that can boost battery voltages up to the 5 volt USB standard. This is accomplished using the LTC3426, a DC/DC converter with a built in switching element. The IC is a tiny SOT-23 package, and requires a few external passives work.

One interesting detail of USB charging is the resistor configuration on the USB data lines. These tell the device how much current can be drawn from the charger. For this device, the resistors are chosen to set the charge current to 0.5 A.

While a 0.5 A charge current isn’t exactly fast, it does allow for charging off AA batteries. [Pedro]’s testing resulted in a fully charged phone off of two AA batteries, but they did get a bit toasty while powering the device. It might not be the best device to stick in your pocket, but it gets the job done.

Programmable Lithium Charger Shield for Arduino

Surely you need yet another way to charge your lithium batteries—perhaps you can sate your desperation with this programmable multi (or single) cell lithium charger shield for the Arduino?! Okay, so you’re not hurting for another method of juicing up your batteries. If you’re a regular around these parts of the interwebs, you’ll recall the lithium charging guide and that rather incredible, near-encyclopedic rundown of both batteries and chargers, which likely kept your charging needs under control.

That said, this shield by Electro-Labs might be the perfect transition for the die-hard-‘duino fanatic looking to migrate to tougher projects. The build features an LCD and four-button interface to fiddle with settings, and is based around an LT1510 constant current/constant voltage charger IC. You can find the schematic, bill of materials, code, and PCB design on the Electro-Labs webpage, as well as a brief rundown explaining how the circuit works. Still want to add on the design? Throw in one of these Li-ion holders for quick battery swapping action.

[via Embedded Lab]