PSA: Don’t Let Kids Eat Lithium Batteries

We get a lot of press releases at Hackaday, but this one was horrific enough that we thought it was worth sharing. Apparently, some kids are accidentally eating lithium coin cell batteries. When this happens with bigger cells, usually greater than 20 millimeters (CR2032, CR2025, and CR2016) really bad things happen. Like burning esophaguses, and even death.

The National Capital Poison Center has done some research on this, and found that 14% of batteries swallowed over the past two years came from flameless candles like the ones above. We know some of our readers also deal with batteries in open trays, which are apparently pretty dangerous for children.

The National Capital Poison Center’s website has an entire page dedicated to battery safety, which is probably worth a read if you deal with batteries and small children on a regular basis. Should an incident occur, there’s even a hotline to call for assistance.

So, please, don’t swallow batteries, or let children put them in their mouths. After the break, a Canadian PSA song about not putting things in your mouth.

Continue reading “PSA: Don’t Let Kids Eat Lithium Batteries”

Counting Laps and Testing Products with OpenCV

It’s been about a year and a half since the Batteroo, formally known as Batteriser, was announced as a crowdfunding project. The premise is a small sleeve that goes around AA and AAA batteries, boosting the voltage to extract more life out of them. [Dave Jones] at EEVblog was one of many people to question the product, which claimed to boost battery life by 800%.

Batteroo did manage to do something many crowdfunding projects can’t: deliver a product. Now that the sleeves are arriving to backers, people are starting to test them in the wild. In fact, there’s an entire thread of tests happening over on EEVblog.

One test being run is a battery powered train, running around a track until the battery dies completely. [Frank Buss] wanted to run this test, but didn’t want to manually count the laps the train made. He whipped up a script in Python and OpenCV to automate the counting.

The script measures laps by setting two zones on the track. When the train enters the first zone, the counter is armed. When it passes through the second zone, the lap is recorded. Each lap time is kept, ensuring good data for comparing the Batteroo against a normal battery.

The script gives a good example for people wanting to play with computer vision. The source is available on Github. As for the Batteroo, we’ll await further test results before passing judgement, but we’re not holding our breath. After all, the train ran half as long when using a Batteroo.

Hackathon Alert: Clean Tech At TVCoG

At Hackaday, we get notified of a lot of the cool events going on in hackerspaces all around the world. We’d like to keep you informed too, just in case there’s something going on in your neighborhood.

So we’re going to start running a weekly column on Saturdays that groups together all of the upcoming week’s exceptional events and noteworthy gatherings. If your hackerspace has something going on, tell us about your event on or around the preceding Wednesday. We’ll see your space in on Hackaday!
Continue reading “Hackathon Alert: Clean Tech At TVCoG”

Converting an Electric Scooter to Lithium Batteries and Disabling the Safeties

There’s a bunch of different electric scooters available nowadays, including those hoverboards that keep catching fire. [TK] had an older Razor E300 that uses lead acid batteries. After getting tired of the low speeds and 12 hour charge times, [TK] decided it was time to swap for lithium batteries.

The new batteries were sourced from a Ryobi drill. Each provides 18 V, giving 36 V in series. The original batteries only ran at 24 V, which caused some issues with the motor controller. It refused to start up with the higher voltage. The solution: disable the safety shutdown relay on the motor controller by bridging it with a wire.

With the voltage issue sorted out, it was time for the current limit to be modified. This motor controller uses a TI TL494 to generate the PWM waveforms that drive a MOSFET to provide variable power to the motor. Cutting the trace to the TL494’s current sense pin removed the current limit all together.

We’re not saying it’s advisable to disable all current and voltage limits on your scooter, but it seems to be working out for [TK]. The $200 scooter now does 28 km/h, up from 22 km/h and charges much faster. With gearing mods, he’s hoping to eke out some more performance.

After the break, the full conversion video.

Continue reading “Converting an Electric Scooter to Lithium Batteries and Disabling the Safeties”

Nanotech Makes Safer Lithium Batteries

Lithium-ion batteries typically contain two electrodes and an electrolyte. Shorting or overcharging the battery makes it generate heat. If the temperature reaches about 300 degrees Fahrenheit (150 degrees Celsius), the electrolyte can catch fire and explode.

spikesThere have been several attempts to make safer lithium-ion cells, but often these safety measures render them unusable after overheating. Stanford University researchers have a new method to protect from overheating cells that uses–what else–nanotechnology graphene. The trick is a thin film of polyethylene that contains tiny nickel spikes coated with graphene (see electron micrograph to the right).

Continue reading “Nanotech Makes Safer Lithium Batteries”

Adding Range (and Bling) to an Electric Skateboard

Long-time Hackaday reader [Andrew Rossignol] bought a Boosted-brand electric skateboard while he was living in NYC. While the batteries more than sufficed for his commute in the Big Apple, he ran out of juice when he moved to the Left Coast, leaving him three miles short of a ten mile trip.

Faced with the unthinkable fate of pushing his skateboard like a Neanderthal, [Andrew] added more batteries. There’s great detail about how he chose the battery chemistry and the particulars of charging and something about load balancing, so it’s definitely worth a read if you’re building an electric vehicle.

IMG_3927But once [Andrew] had some surplus battery capacity on board (tee hee!) he thought of ways to waste it. The natural solution: tons of RGB LED underlighting.

Still not content with an off-the-shelf solution (which wouldn’t let him recharge the batteries without unplugging the lights), he ended up rolling his own with an Arduino and some WS2812s. The nicest touch? Keeping it all out of the elements in a sweet aluminum box, hiding the cable salad within.

There’s a lot to be said for the good industrial design of something like the Boosted skateboard, but if you’d rather DIY, we’ve been covering electric skateboard for a while now. It’s nice to see how battery and motor technology have changed since then, too. Compare and contrast this recent build with that old-school version and with [Andrew’s] build that was covered in this post. We live in good times.

2015 THP Inspiration: Renewable Energy

Most of our energy comes from dead algae or dead ferns right now, and we all know that can’t continue forever. The future is by definition sustainable, and if you’re looking for a project to change the world for this year’s Hackaday Prize, you can’t do better than something to get the world off carbon-based fuels.

mhqyqz7The simplest solar builds can be as fun as a redneck hot tub – a solar thermal water heater repurposed into a heated swimming pool with the help of a pump and JB Weld. You can even build a hose-based version for $100. They can be as useful as a Maximum Power Point Tracking charger for a solar setup – a few bits of electronics that ensure you’re getting the most out of your solar cells. You can, of course, access solar power in a roundabout way with a wind generator built from a washing machine and a 555 timer.

carben-mainGetting energy from the sun is one thing, and putting it to use is another thing entirely. We spend a lot of energy on transportation, and for that there’s a solar power bike, an electric scooter, or a completely open source electric car.

Building the machines that make sustainable energy possible or even just the tools that will let us use all that energy are just a few ideas that would make great entries for The Hackaday Prize. You could go another direction and build the tools that will build and maintain these devices, like figuring out a way to keep these batteries and generators out of the landfill. Any way you look at it, anything that actually matters  would make a great entry to The Hackaday Prize.