B Battery Takes a 9V Cell

Old American radios (and we mean really old ones) took several kinds of batteries. The A battery powered the filaments (generally 1.5V at a high current draw). The B battery powered the plate (much lower current, but a higher voltage–typically 90V). In Britain these were the LT (low tension) and HT (high tension) batteries. If you want to rebuild and operate old radios, you have to come up with a way to generate that B voltage.

Most people opt to use an AC supply. You can daisy-chain a bunch of 9V batteries, but that really ruins the asthetics of the radio. [VA3NGC] had a better idea: he built a reproduction B battery from a wooden box, some brass hardware, a nixie tube power supply, and a 9V battery (which remains hidden). There’s also a handful of zener diodes, resistors, and capacitors to allow different taps depending on the voltage required.

b-battery-in-useThe project looks great. The wooden box apparently was a recycle item and the brass hardware makes it look like it belongs with the old radios it powers. This is a good example of how there’s more to vintage restoration than just the electronics. Sure, the function is important, but to really enjoy the old gear, the presentation is important, too.

Not all tube radios took 90V B+, but since this battery has taps, that isn’t a problem. The old Radio Shack P-Box kit took 22.5V. Of course, if you are going to build your own battery, maybe you ought to build your own triodes, too.

Cheap Electric Car Drives Again with Charger Repair

If someone sent you an advert for an electric car with a price too low to pass up, what would you do? [Leadacid44] was in that lucky situation, and since it was crazy cheap, bought the car.

Of course, there’s always a problem of some kind with any cheap car, and this one was no exception. In this case, making it ‘go’ for any reasonable distance was the problem. Eventually a faulty battery charging system was diagnosed and fixed, but not before chasing down a few other possibilities. While the eventual solution was a relatively simple one the write-up of the car and the process of finding it makes for an interesting read.

The car in question is a ZENN, a Canadian-made and electric-powered licensed version of the French Microcar MC2 low-speed city car with a 72 volt lead-acid battery pack that gives a range of about 40 miles and a limited top speed of 25 miles per hour. Not a vehicle that is an uncommon sight in European cities, but very rare indeed in North America. Through the write-up we are introduced to this unusual vehicle, the choice of battery packs, and to the charger that turned out to be defective. We’re then shown the common fault with these units, a familiar dry joint issue from poor quality lead-free solder, and taken through the repair.

We are so used to lithium-ion batteries in electric cars that it’s easy to forget there is still a small niche for lead-acid in transportation. Short-range vehicles like this one or many of the current crop of electric UTVs can do without the capacity and weight savings, and reap the benefit of the older technology being significantly cheaper. It would however be fascinating to see what the ZENN could achieve with a lithium-ion pack and the removal of that speed limiter.

If your curiosity is whetted by European electric microcars, take a look at our previous feature n the futuristic Hotzenblitz, from Germany.

Replacing a Failed Ebook Reader Battery

Resurrecting a beloved piece of tech can be a trying process when fighting through the mild heartbreak — doubly so if the product has been discontinued. When their old Sony PRS-T1 e-book reader refused to charge after leaving it on their dashboard during a hot day, [Andrea Gangemi] decided to leverage a little techno-necromancy and hack together a fix.

[Gangemi] found the problem to be a battery failure, but there was nary a replacement to be found. An old Motorola mobile phone battery ended up fitting the purpose nicely. Cracking open the e-book reader, de-soldering the old battery and — after deciphering which pins were which — installing the new one was simply done with a fine, high temperature soldering iron tip and Kapton tape to avoid short-circuiting. But hold on — the new battery wouldn’t charge, and the reader displayed a message saying that the battery was over heating; irony, thou art cruel.

Continue reading “Replacing a Failed Ebook Reader Battery”

Make Your Own Nuclear Battery

miami_nano
A commercial nuclear battery from City Labs.

A Betavoltaic cell is a device that uses a radioactive source of beta particles and a semiconductor p-n junction to generate electricity. Tritium, an isotope of hydrogen, is often used as the radioactive element. You may think that tritium is hard to obtain or even forbidden, however, recently you can find tritium in self-lightning key chains, and it is also used in watches and firearm night sights. The beta particles (electrons) from the tritium radioactive process causes phosphors in the device to glow, giving a light that can last for years.

[NurdRage] has just created a nuclear battery using tritium vials from key chains. After getting rid of the plastic containers, he sandwiches the vials between two small solar panels. That’s all! Instant power for the next 15 years. Of course, the amount of power you can get from this device is on the order of microwatts. The battery produces around 1.6 volts at 800 nano amps. He gets 1.23 microwatts, not much, but it is in fact more than the output of commercial units at 0.84 microwatts, for a ten percent of the cost. That minuscule amount of power is actually not easy to measure, and he does a great job explaining the circuit he used to measure the current.

Continue reading “Make Your Own Nuclear Battery”

Diamond Batteries That Last For Millennia

Like many industrialized countries, in the period after the Second World War the United Kingdom made significant investments in the field of nuclear reactors. British taxpayers paid for reactors for research, the military, and for nuclear power.

Many decades later that early crop of reactors has now largely been decommissioned. Power too cheap to meter turned into multi-billion pound bills for safely coping with the challenges posed by many different types of radioactive waste generated by the dismantling of a nuclear reactor, and as the nuclear industry has made that journey it in turn has spawned a host of research projects based on the products of the decommissioning work.

One such project has been presented by a team at Bristol University; their work is on the property of diamonds in generating a small electrical current when exposed to radioactive emissions. Unfortunately their press release and video does not explain the mechanism involved and our Google-fu has failed to deliver, but if we were to hazard a guess we’d ask them questions about whether the radioactivity changes the work function required to release electrons from the diamond, allowing the electricity to be harvested through a contact potential difference. Perhaps our physicist readers can enlighten us in the comments.

So far their prototype uses a nickel-63 source, but they hope to instead take carbon-14 from the huge number of stockpiled graphite blocks from old reactors, and use it to create radioactive diamonds that require no external source. Since the output of the resulting cells will be in proportion to their radioactivity their life will be in the same order of their radioactive half-life. 5730 years for half-capacity in the case of carbon-14.

Of course, it is likely that the yield of electricity will not be high, with tiny voltages and currents this may not represent a free energy miracle. But it will be of considerable interest to the designers of ultra-low-maintenance long-life electronics for science, the space industry, and medical implants.

We’ve put their video below the break. It’s a straightforward explanation of the project, though sadly since it’s aimed at the general public it’s a little short on some of the technical details. Still, it’s one to watch.

Continue reading “Diamond Batteries That Last For Millennia”

DIYing A Raspberry Pi Power Bank

Over the last decade or so, battery technology has improved massively. While those lithium cells have enabled thin, powerful smartphones and quadcopters, [patrick] thought it would be a good idea to do something a little simpler. He built a USB power bank with an 18650 cell. While it would be easier to simply buy a USB power bank, that’s not really the point, is it?

This project is the follow-up to one of [patrick]’s earlier projects, a battery backup for the Raspberry Pi. This earlier project used an 14500 cell and an MSP430 microcontroller to shut the Pi down gracefully when the battery was nearing depletion.

While the original project worked well with the low power consumption Pi Model A and Pi Zero, it struggled with UPS duties on the higher power Pi 3. [patrick] upgraded the cell and changed the electronics to provide enough current to keep a high-power Pi on even at 100% CPU load.

The end result is a USB power bank that’s able to keep a Raspberry Pi alive for a few hours and stays relatively cool.

Weaponizing Elementary Science Experiments

[austiwawa] was playing around with one of those simple linear motors people build as friendly little science experiments. There’s an AA battery in the middle of a set of magnets. When you put it inside of a spring it zips around inside until you run out of spring or magic pixies in the battery.

Of course, the natural question arose, “How do I make it go fast!? Like fast!” After making explosion and woosh noises for a bit (like any good hacker would) he settled down and asked a more specific question. If I made the coil the barrel of an air gun, and then shot the battery out… would it go faster?

So, he built an air cannon. It took some ingenuity and duct tape, but he managed to line the barrel with a copper coil. After that he built an experimental set-up, because making something dangerous is only okay if it’s science. That’s the difference between sensible adults and children.

He shot three “dead” rounds through the cannon, and got a baseline result. These dead rounds were made so by placing the magnets at the improper polarity to forego the motion-boosting properties. Then he shot three live ones through. It went measurably faster! Neat!

What’s the silliest thing you’ve ever seen properly characterized? Let us know in the comments below.

Continue reading “Weaponizing Elementary Science Experiments”