Microfluidics “Frogger” is a Game Changer for DIY Biology

xgy5x3

See those blue and green dots in the GIF? Those aren’t pixels on an LCD display. Those are actual drops of liquid moving across a special PCB. The fact that the droplets are being manipulated to play a microfluidics game of “Frogger” only makes OpenDrop v 2.0 even cooler.

Lab biology is mainly an exercise in liquid handling – transferring a little of solution X into some of solution Y with a pipette. Manual pipetting is tedious, error prone, and very low throughput, but automated liquid handling workstations run into the hundreds of thousands of dollars. This makes [Urs Gaudenz]’s “OpenDrop” microfluidics project a potential game changer for the nascent biohacking movement by offering cheap and easy desktop liquid handling.

Details are scarce on the OpenDrop website as to exactly how this works, but diving into the literature cited reveals that the pads on the PCB are driven to high voltages to attract the droplets. The PCB itself is covered with a hydrophobic film – Saran wrap that has been treated with either peanut oil or Rain-X. Moving the droplets is a simple matter of controlling which pads are charged. Splitting drops is possible, as is combining them – witness the “frog” getting run over by the blue car.

There is a lot of cool work being done in microfluidics, and we’re looking forward to see what comes out of this open effort. We’ve covered other open source efforts in microfluidics before, but this one seems so approachable that it’s sure to capture someone’s imagination.

Continue reading “Microfluidics “Frogger” is a Game Changer for DIY Biology”

Open Microfluidics Instrumentation Playset

Micro-what? Microfluidics! It’s the field of dealing with tiny, tiny bits of fluids, and there are some very interesting applications in engineering, biology, and chemistry. [Martin Fischlechner], [Jonathan West], and [Klaus-Peter Zauner] are academic scientists who were working on microfluidics and made their own apparatus, initially because money was tight. Now they’ve stuck to the DIY approach because they can get custom machinery that simply doesn’t exist.

In addition to their collaboration, and to spread the ideas to other labs, they formed DropletKitchen to help advance the state of the art. And you, budding DIY biohacker, can reap the rewards.

In particular, the group is focused on droplet microfluidics. Keeping a biological or chemical reaction confined to its own tiny droplet is like running it inside its own test-tube, but because of the high rate at which the droplets can be pumped out, literally millions of these test-tubes are available. Want to grow hundreds of thousands of single cells, each in their own environment? Done.

The DropletKitchen kit includes an accurate pump system, along with high-speed camera and flash setups to verify that everything’s working as it should. Everything is open-source, and a lot of it is 3D-printable and written in OpenSCAD so that it’s even easy to modify to fit your exact needs. You just need to bring the science.

This is a professional-grade open source project, and we’re excited to see it when academics take a turn toward the open. Bringing cutting edge processing technologies within reach of the biohacker community is a huge multiplier. We can’t wait to see what comes out of this.

Lego-Like Chemistry and Biology Erector Set

A team of researchers and students at the University of California, Riverside has created a Lego-like system of blocks that enables users to custom build chemical and biological research instruments. The system of 3D-printed blocks can create a variety of scientific tools.

The blocks, which are called Multifluidic Evolutionary Components (MECs) appeared in the journal PLOS ONE. Each block in the system performs a basic lab instrument task (pumping fluids, making measurements or interfacing with a user, for example). Since the blocks are designed to work together, users can build apparatus — like bioreactors for making alternative fuels or acid-base titration tools for high school chemistry classes — rapidly and efficiently. The blocks are especially well suited for resource-limited settings, where a library of blocks can create a variety of different research and diagnostic tools.

Continue reading “Lego-Like Chemistry and Biology Erector Set”

3D Printing Bone

What do you print with your 3D printer? Key chains? More printer parts (our favorite)? Enclosures for PC boards? At Johns Hopkins, they want to print bones. Not Halloween skeletons, either. Actual bones for use in bodies.

According to Johns Hopkins, over 200,000 people a year need head or face bone replacements due to birth defects, trauma, or surgery. Traditionally, surgeons cut part of your leg bone that doesn’t bear much weight out and shape it to meet the patient’s need. However, this has a few problems. The cut in the leg isn’t pleasant. In addition, it is difficult to create subtle curved shapes for a face out of a relatively straight leg bone.

This is an obvious application for 3D printing if you could find a suitable material to produce faux bones. The FDA allows polycaprolactate (PCL) plastic for other clinical uses and it is attractive because it has a relatively low melting point. That’s important because mixing in biological additives is difficult to do at high temperatures.

Continue reading “3D Printing Bone”

DNA Extraction With A 3D-Printed Centrifuge

[F.Lab] is really worried that we are going to prepare a DNA sample from saliva, dish soap, and rubbing alcohol in their 3D-printed centrifuge and then drink it like a shot. Perhaps they have learned from an horrific experience, perhaps biologists have different dietary requirements. Either way, their centrifuge is really cool. Just don’t drink the result. (Ed note: it’s the rubbing alcohol.)

The centrifuge was designed in Sketch-Up and then 3D printed. They note to take extra care to get high quality 3D prints so that the rotor isn’t out of balance. To get the high speeds needed for the extraction, they use a brushless motor from a quadcopter. This is combined with an Arduino and an ESC. There are full assembly instructions on Thingiverse.

[F.Lab] has some other DIY lab equipment designs, such as this magnetic stirrer. Which we assume you could use to make a shot if you wanted to. However, it’s probably not a good idea to mix lab supplies and food surfaces. Video after the break.

Continue reading “DNA Extraction With A 3D-Printed Centrifuge”

Take Your 3D Printing to the Next Dimension

In what is being hailed as the next great advancement in 3D printing, scientists have been able to get a 3D printed shape to change form when it is exposed to water, bringing 3D printing squarely into the realm of the fourth dimension. Although the only examples we’ve seen so far are with relatively flat prints (which arguably subtracts one “D” from the claim) the new procedure is one which is groundbreaking for the technology.

The process uses cellulose fibers which, when aligned in a particular way and exposed to water, swell in order to change shape. This is similar to how a bimetallic strip in a thermostat works, but they really took their inspiration from biological processes in plants that allow them to change shape according to environmental conditions. It’s hard to tell if this new method of printing will forever alter the landscape of 3D printing but, for now, it’s an interesting endeavor that will be worth watching. The video after the break shows a fast-motion print using the technique, followed by a demo of the print submersed in water.

We often see new technological advancements that use biology as a springboard for new ideas, and this one is no different. There have been building structures inspired by pinecones and this Processing hack inspired by squid. Biology is all around us, and any of it could be used for inspiration for your next project!

Continue reading “Take Your 3D Printing to the Next Dimension”

Cyborg Photosynthetic Bacteria!

This is weird science. Researchers at Lawrence Berkeley National Laboratory have taken some normal bacteria and made them photosynthetic by adding cadmium sulfide nanoparticles. Cadmium sulfide is what makes the garden-variety photoresistor work. That’s strange enough. But the bacteria did the heavy lifting — they coated themselves in the inorganic cadmium — which means that they can continue to grow and reproduce without much further intervention.

Bacteria are used as workhorses in a lot of chemical reactions these days, and everybody’s trying to teach them new tricks. But fooling them into taking on inorganic light absorbing materials and becoming photosynthetic is pretty cool. As far as we understand, the researchers found a chemical pathway into which the electrons produced by the CdS would fit, and the bacteria took care of the rest. They still make acetic acid, which is their normal behavior, but now they produce much more when exposed to light.

If you want to dig a little deeper, the paper just came out in Science magazine, but it’s behind a paywall. But with a little searching, one can often come up with the full version for free. (PDF).

Or if you’d rather make electricity, instead of acetic acid, from your bacteria be our guest. In place of CdS, however, you’ll need a fish. Biology is weird.

Headline images credit: Peidong Yang