THP Semifinalist: B10N1C Yourself

Bionic

The Hackaday Prize has had a few medical devices make the semifinalist cut, and of course wearables are on the list. How about implantables? That’s what Bionic Yourself 2.0 (or B10N1C) is doing with an implantable microcontroller, battery, and sensor system.

The hardware in B10N1C includes a electromyography sensor for measuring muscle activity, an accelerometer, a vibration motor, RFID reader/writer, temperature sensor, and – get this – a LED bar graph that will shine a light through the skin. That’s something we’ve never seen before, and if you’re becoming a cyborg, it’s a nice feature to have.

As with anything you would implant in your body, safety is a prime consideration for Bionic.the Lithium battery can be overcharged (yes, through a wireless charging setup) to 10V without a risk of fire or explosion, can be hit with a hammer, and can even be punctured. The enclosure is medical grade silicone, the contacts are medical grade stainless steel, and there’s a humidity sensor inside that will radio a message saying its time to remove the device if the moisture level in the enclosure increases.

Because the device is implanted under the skin, being able to recharge and update the code without a physical connection is the name of the game. There’s a coil for wireless charging, and a lot of work is going into over the air firmware updating. It’s an astonishing project, and while most people probably won’t opt for a cyborg implant, it will look really cool.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Building a prosthetic leg from scratch

[Radek] from Poland sent in a neat video of a bionic prosthetic leg he made for one of his patients. Even though [Radek] says it’s a ‘prototype of a prototype,’ we’d have to agree with him that it’s a very neat build that could provide inexpensive motorized prosthetic legs to amputees in the future.

[Radek] has been working on his project for about two years now, after building the motor and electronics by hand. The leg is powered by 1.5 kilogram battery pack – no details on the chemistry of the batteries, but [Radek] says it will last 12 hours on one charge. There are also small vibration sensors in the leg for a bit of feedback, and a few switches so the knee joint can be operated by the stump.

If you’re wondering where [Radek] got the proper tools and materials to make a carbon fiber prosthesis, he works for Carbon Prosthetics where builds simple prosthetic devices. His bionic leg creation looks really cool, and he says the final product will be much less expensive than the very high-end bionic prosthetic legs.

[Radek] was kind enough to share some more videos and a few pictures of his robotic prosthetic leg; you can check those out after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,670 other followers