The project's wrist-worn heartrate sensor shown on someone's hand, Caption: Our device has three main components: watch electronics (arrow to watch display), organism enclosure (arrow to the 3D-printed case of the watch) and our living organism physarum polycephalum a.k.a slime mold.

What If Your Day-To-Day Devices Were Alive?

We take advantage of a variety of devices in our day-to-day life, and we might treat them as just pieces of hardware, elements fulfilling a certain purpose — forgotten about until it’s time to use them. [Jasmine Lu] and [Pedro Lopes] believe that these relationships could work differently, and their recent paper describes a wearable device that depends on you as much as you depend on it. Specifically, they built wrist-worn heart rate sensors and designed a living organism into these, in a way that it became vital to the sensor’s functioning.

The organism in question is Physarum polycephalum, a slime mold that needs water to stay alive and remain conductive — if you don’t add water on a regular basis, it eventually dries out and hibernates, and adding water then will revive it. The heart rate sensor’s power rail is controlled by the mold, meaning the sensor functions only as long as you keep the mold alive and healthy. In their study, participants were asked to wear this device for one-two weeks, and the results go way beyond what we would expect from, say, a Tamagotchi — with the later pages describing participant reactions and observations being especially impressive.

For one, the researchers found that the study participants developed a unique sense of connection towards the slime mold-powered device, feeling senses of responsibility and reciprocity, and a range of other feelings you wouldn’t associate with a wearable. Page 9 of the paper tells us how one participant got sick, but still continued caring for the organism out of worry for its well-being, another participant brought her “little pet mold friend” on a long drive; most participants called the slime a “friend” or a “pet”. A participant put it this way:

[…] it’s always good to be accompanied by some living creature, I really like different, animals or plants. […] carrying this little friend also made me feel happy and peaceful.

There’s way more in the paper, but we wouldn’t want to recite it in full — you should absolutely check it out for vivid examples of experiences that you’d never have when interacting with, say, your smartphone, as well as researchers’ analysis and insights.

With such day-to-day use devices, developing a nurturing relationship could bring pleasant unexpected consequences – perhaps, countering the “kept on a shelf since purchase” factor, or encouraging repairability, both things to be cherished. If you’ve ever overheard someone talking about their car or laptop as if it were alive, you too might have a feeling such ideas are worth exploring. Of course, not every device could use a novel aspect like this, but if you wanted to go above and beyond, you could even build a lamp that needs to be fed to function.

Continue reading “What If Your Day-To-Day Devices Were Alive?”

How To Monitor Blood Pressure Without Raising It

Does anyone actually enjoy the sensation of being squeezed by a blood pressure cuff? Well, as Mom used to say, it takes all kinds. For those who find the feeling nearly faint-inducing, take heart: researchers at UC San Diego have created a non-invasive medical wearable with a suite of sensors that can measure blood pressure and monitor multiple biochemicals at the same time.

The device is a small, flexible patch that adheres to the skin. So how does it manage to measure blood pressure without causing discomfort? The blood pressure sensor consists of eight customized piezoelectric transducers that bounce ultrasonic waves off the near and far walls of the artery. Then the sensor calculates the time of flight of the resulting echoes to gauge arterial dilation and contraction, which amounts to a blood pressure reading.

This patch also has a chemical sensor that uses a drug called pilocarpine to induce the skin to sweat, and then measures the levels of lactate, caffeine, and alcohol found within. To monitor glucose levels, a mild current stimulates the release of interstitial fluid — the stuff surrounding our cells that’s rife with glucose, salt, fatty acids, and a few minerals. This is how continuous glucose monitoring for diabetes patients works today. You can check out the team’s research paper for more details on the patch and its sensors.

In the future, the engineers are hoping to add even more sensors and develop a wireless version that doesn’t require external power. Either way, it looks much more comfortable and convenient than current methods.

Wearable Sensors On Your Skin

An international team at Penn State led by [Larry Cheng] made a breakthrough in printing sensors directly on skin without heat. The breakthrough here is the development of a room-temperature sintering technique. Typical sintering of copper happens at 300 C, and can be further lowered to 100 C by adding nanoparticles. But even 100 C is too hot, since skin starts to burn at around 40 C.

You can obtain their journal article if you want the details, but basically their technique combines the ingredients in peelable face masks and eggshells. With this printed circuit is applied to the skin, the sintering process only requires a hair dryer on the cool setting, and results can bend and fold without breaking the connections. A hot shower will remove the circuit without damaging the circuit or your skin. [Larry] says the circuits can be recycled.

They are using these sensors to monitor temperature, humidity, blood oxygen levels, and heart performance indicators. They’ve even linked these various on-body sensors with a WiFi network for ease of monitoring. After reading this report, we’re left wondering, if the sensor is directly on your skin, can it be really called wearable?

We’ve written about printable inks before, but for printed circuit board applications.  We can’t help but wonder if this technology would help solve some problems inherent in that technology, as well. Thanks to [Qes] for the tip.

Souped-Up, Next Gen Wearables

The biggest hurdle to great advances in wearable technology is the human body itself. For starters, there isn’t a single straight line on the thing. Add in all the flexing and sweating, and you have a pretty difficult platform for innovation. Well, times are changing for wearables. While there is no stock answer, there are some answers in soup stock.

A group of scientists at Stanford University’s Bao Lab have created a whisper thin co-polymer with great conductivity. That’s right, they put two different kinds of insulators together and created a conductor. The only trouble was that the resulting material was quite rigid. With the help of some fancy x-ray equipment, they discovered that adding a molecule found in standard industrial soup thickeners stops the crystallization process of the polymers, leaving them flexible and stretchy. Get this: the material conducts even better when stretched.

The scientists have used the material to make both simple, transparent electrodes as well as entire flexible transistor arrays with an inkjet printer. They hope to influence next generation wearable technology for everything from smart clothing to medical devices. Who knows, maybe they can team up with the University of Rochester and create a conducting co-polymer that can also shape-shift. Check out a brief demonstration after the break.

Continue reading “Souped-Up, Next Gen Wearables”

Conductive Circuit Board Tattoos: Tech Tats

While hardcore body-hackers are starting to freak us out with embedded circuit boards under their skin, a new more realistic option is becoming available — temporary tech tattoos. They’re basically wearable circuit boards.

Produced by [Chaotic Moon], the team is excited to explore the future of skin-mounted components — connected with conductive ink in the form of a temporary tattoo. And if you’re still thinking why, consider this. If these tattoos can be used as temporary health sensors, packed with different biometric readings, the “tech tat” can be applied when it is needed, in order to monitor specific things.

In one of their test cases, they mount an ATiny85 connected to temperature sensors and an ambient light sensor on the skin. A simple device like this could be used to monitor someone’s vitals after surgery, or could even be used as a fitness tracker. Add a BLE chip, and you’ve got wireless data transfer to your phone or tablet for further data processing.

Continue reading “Conductive Circuit Board Tattoos: Tech Tats”