A Better Way To Hack The Wink

If you’re looking for Home Automation appliances, you might want to check out the Wink Hub. It’s fifty bucks, and has six radios on board: WiFi, Bluetooth, Z-Wave, Zigbee, and 433MHz Lutron and Kidde. That’s an insane amount of connectivity in a very cheap package. It’s been pwnzor3d before, but dinnovative has a much better solution for getting root on this device.

Earlier methods of rooting the Wink involved passing commands via URLs – something that’s not exactly secure. The new method leverages what’s already installed on the Wink, specifically Dropbear, to generate public keys on the Wink hub and getting that key onto another computer securely. The complete exploit is just a few lines in a terminal, but once that’s done you’ll have a rooted Wink hub.

Even though the Wink hub has been rooted a few times before, we haven’t seen anything that leverages the capabilities of this hardware. There isn’t another device with a bunch of IoT radios on the market for $50, and we’re dying to see what people can come up with. If you’ve done something with your Wink, send it in on the tip line.

A Bluetooth Garage Door, Take Three

A few years ago, [Lou] came up with a pretty clever build to open his garage door with his phone. He simply took a Bluetooth headset, replaced the speaker with a transistor, and tied the transistor to a few wires coming out of his garage door opener. When the Bluetooth headset connected, the short beep coming from the speaker output opened the door.

The newest version of this build does away with the simple Bluetooth headset and replaces it with a Bluetooth 4.0 chip. The reason for this is that Apple and their walled garden of an App store would never allow a Samsung Bluetooth headset to be used with one of their iDevices.

The latest build is just about as simple as using a Bluetooth headset. A board that appears to use TI’s CC2540 chip is attached to the garage door opener with a few passives and a transistor. Pairing the new circuit with a phone is as simple as shorting a pair of pins, and the new iOS app does exactly what it should – opens a garage door at the press of a non-button.

While it’s not something that can be put together with scraps from a junk drawer, it’s still an extremely simple solution to opening a garage door with a phone. Video below.

Continue reading “A Bluetooth Garage Door, Take Three”

Coffee Payment System Doesn’t Void Your Warranty

[Oliver] is back with an update to his recent coffee maker hacks. His latest hack allowed him to add a coffee payment system to an off-the-shelf coffee maker without modifying the coffee maker itself. This project is an update to his previous adventures in coffee maker hacking which logged who was using up all of the coffee.

The payment system begins with an Arduino Uno clone inside of a small project enclosure. The Arduino communicates with the coffee maker via serial using the coffee maker’s service port. This port is easily available from outside the machine, so you won’t have to crack open the case and risk voiding your warranty.

The system also includes an RFID reader and a Bluetooth module. The RFID reader allows each user to have their own identification card. The user can swipe their card over the reader and the system knows how many credits are left in their account. If they have enough credit, the machine will pour a delicious cup of coffee.

The Arduino communicates to an Android phone using the Bluetooth module. [Oliver’s] Android app was built using MIT’s app inventor. It keeps track of the account credits and allows the user to add more. The system can currently keep track of up to forty accounts. [Oliver] also mentions that you can use any Bluetooth terminal program to control the system instead of a smart phone app. Continue reading “Coffee Payment System Doesn’t Void Your Warranty”

World’s First Smart Snowboard Changes Music According To Your Actions

Ever wanted a soundtrack to your life? For a couple of minutes at a time, Signal Snowboards creates that experience with a smart snowboard that varies your music depending on the tricks you perform on your way down the mountain.

The sign on the door says “School For Gifted Hackers”. Inside [Matt Davis] helped interface audio with an accelerometer – something he regularly does with all manner of hacked devices. At first the prototype was an iPhone mimicking the motions of a snowboarder the way fighter pilots describe dogfights with their hands. The audio engine that pulls those mostions to sound is open source and anyone is welcome to do their own tuning.

Once the audio was figured out the boys took it back to their shop and embedded the sensors into a new snowboard. The board is equipped with GPS, an accelerometer, a few rows of LEDs and a bluetooth board to connect to the phone app. It’s all powered by an on-board LiPo battery and a barrel jack out the side to charge it. Channels were cut by hand with a router then electronics sealed in place with epoxy. Not wanting to “just strap some Christmas lights onto a snowboard” the lighting is also connected to the sensors and is programmable.

See the video below of them making the board and taking it out for a test run on Bear Mountain.

Continue reading “World’s First Smart Snowboard Changes Music According To Your Actions”

$15 Car Stereo Bluetooth Upgrade

We’ve seen all sorts of ways to implement Bluetooth connectivity on your car stereo, but [Tony’s] hack may be the cheapest and easiest way yet. The above-featured Bluetooth receiver is a measly $15 over at Amazon (actually $7.50 today—it’s Cyber Monday after all) and couldn’t be any more hacker-friendly. It features a headphone jack for plugging into your car’s AUX port and is powered via USB.

[Tony] didn’t want the receiver clunking around in the console, though, so he cracked it open and went about integrating it directly by soldering the appropriate USB pins to 5V and GND on the stereo. There was just one catch: the stereo had no AUX input. [Tony] needed to rig his own, so he hijacked the CD player’s left and right audio channels (read about it in his other post), which he then soldered to the audio output of the Bluetooth device. After shoving all the bits back into the dashboard, [Tony] just needed to fool his stereo into thinking a CD was playing, so he burned a disc with 10 hours of silence to spin while the tunes play wirelessly. Nice!

Bluetooth Boombox for that 80s Nostalgia

Sure, anyone can go buy a bluetooth speaker for their portable music needs. But for something a little more unique, at least in this decade, [Daniel] aka [speedfox] went with an 80s-style boombox and outfitted it with a bluetooth module.

The retro boombox was delivered with a few scratches and a broken radio, but the tape decks were still in decent shape so it was ready to be hacked. [speedfox] tied the Bluetooth audio output to the tape reader on one of the boombox’s tape decks, but this revealed a problem: the bass was overwhelming the rest of the sound. [speedfox] fixed this by adding a filter which worked until the power was tied in to the Bluetooth module and produced a lot of RF noise in the audio output. THIS problem was finally resolved with an audio transformer on both sides of the stereo signal. Finally!

After putting all of the new electronics in the case (and safely out of the way of the 120V AC input!) [speedfox] now has a classy stereo that’s ready to rock some Run-D.M.C. or Heavy D. He notes that the audio filter could use a little tweaking, and he’d also like to restore the functionality of the original buttons on the boombox, but it’s a great start with more functionality than he’d get from something off-the-shelf!

Bluetooth-Enabled Danger Sign for Lab

[A Raymond] had some free time at work, and decided to spend it on creating a wireless warning sign. According to his blog profile, he is a PhD student in Applied Physics. His lab utilizes a high-powered laser system. His job is to use said system, but only after it’s brought online by faculty scientists. The status of the laser system is changed by a manual switchbox that controls the warning signs wired around the lab entrances. Unfortunately, if you were in the upstairs office, you only knew this after running downstairs to check. [A Raymond’s] admitted laziness finally got the better of him – he wanted a sign that displayed the laser’s status from the comfort of the office. He had an old sign he could use, but he wanted a way for it to communicate with the switchbox downstairs. After some thought, he decided Bluetooth was the way to go, using a pair of BlueSMiRF Bluetooth modules from Sparkfun and Arduino Uno R3’s.

He constructed a metal box that intercepted the cable from the main switchbox, mounting one BlueSMiRF and Uno into it. Upon learning that the switchbox sends 12V AC signals over three individual status wires, he half-wave rectified the wires and divided their voltages so that the Uno wouldn’t fry. Instead, it determined which status wire that had active voltage. and sent a “g(reen)”, “y(ellow)”, or “r(ed)” signal continuously via Bluetooth. On the receiving end, [A Raymond] gutted the sign and mounted the other BlueSMiRF and Uno into it along with some green, yellow, and red LEDs. The LEDs light up in response to the corresponding Bluetooth signal.

The result is a warning sign that is always up-to-date with the switchbox’s status. We’ve covered projects using Bluetooth before, from plush birds to cameras- [A Raymond’s] wireless sign is in good company. He notes that it’s “missing” a high pitched whining noise when the “Danger” lights are on. If he decides to add an accompanying (annoying) sound, he couldn’t go wrong with something like this. Regardless, we’re sure [A Raymond] is happy that he no longer has to go back and forth between floors before he can use the laser.