Bomb Defusal Fun With Friends!

Being a member of the bomb squad would be pretty high up when it comes to ranking stressful occupations. It also makes for great fun with friends. Keep Talking and Nobody Explodes is a two-player video game where one player attempts to defuse a bomb based on instructions from someone on the other end of a phone. [hephaisto] found the game great fun, but thought it could really benefit from some actual hardware. They set about building a real-life bomb defusal game named BUMM.

The “bomb” itself consists of a Raspberry Pi brain that communicates with a series of modules over a serial bus. The modules consist of a timer, a serial number display, and two “riddle” boxes covered in switches and LEDs. It’s the job of the bomb defuser to describe what they see on the various modules to the remote operator, who reads a manual and relays instructions based on this data back to the defuser. For example, the defuser may report seeing a yellow and green LED lit on the riddle module – the operator will then look this up and instruct the defuser on which switches to set in order to defuse that part of the bomb. It’s the challenge of quickly and accurately communicating in the face of a ticking clock that makes the game fun.

[hephaisto] took this build to Make Rhein-Main 2017, where they were very accepting of a “bomb” being brought onto the premises. The game was setup in a booth with an old analog S-video camera feed and a field telephone for communication – we love the detail touches that really add atmosphere to the gameplay experience.

Overall, it’s a great project that could easily be recreated by any hackerspace looking for something fun to share on community nights. The build files are all available on the project GitHub so it’s easy to see the nuts and bolts of how it works.

We’ve seen builds that bring video games into the real world before – like this coilgun Scorched Earth build. Fantastic.

Explosive New Process Produces Graphene by the Gram

You say you need some graphene so you can invent the Next Big Thing, but you can’t be bothered with processes that yield a few measly milligrams of the precious stuff. Luckily for you there’s a new method for producing gram quantities of graphene. Perhaps unluckily, it requires building a controlled fuel-air bomb.

Graphene is all the rage today, promising to revolutionize everything from batteries to supercapacitors to semiconductors. A molecularly-2D surface with unique properties, graphene can be made in very small quantities with such tedious methods as pulling flakes of the stuff off graphite lumps with Scotch tape. Slightly less ad hoc methods involve lasers, microwaves, or high temperatures and nasty chemicals. But all of these methods are batch methods that produce vanishingly small amounts of the stuff.

The method [Chris Sorenson] et al of Kansas State University developed, which involves detonating acetylene and oxygen in a sturdy pressure vessel with a spark plug, can produce grams of graphene at a go. And what’s more, as their patent application makes clear, the method is amenable to a continuous production process using essentially an acetylene-fueled internal combustion engine.

While we can’t encourage our readers to build an acetylene bomb in the garage, the process is so simple that it would be easily replicated. We wonder how far down it could scale for safety and still produce graphene. Obviously, be careful if you choose to replicate this experiment. If you don’t like explosions and can source some soybean oil and nickel foil, maybe try this method instead. Then you’ll have something to mix with your Silly Putty.

Continue reading “Explosive New Process Produces Graphene by the Gram”

Tiny PIC Clock is Not a Tiny Bomb

It’s been a few weeks since the incident where Ahmed Mohamed, a student, had one of his inventions mistaken for a bomb by his school and the police, despite the device clearly being a clock. We asked for submissions of all of your clock builds to show our support for Ahmed, and the latest one is the tiniest yet but still has all of the features of a full-sized clock (none of which is explosions).

[Markus]’s tiny clock uses a PIC24 which is a small yet powerful chip. The timekeeping is done on an RTCC peripheral, and the clock’s seven segment displays are temporarily lit when the user presses a button. Since the LEDs aren’t on all the time, and the PIC only consumes a few microamps on standby, the clock can go for years on a single charge of the small lithium-ion battery in the back. There’s also a phototransistor which dims the display in the dark, and a white LED which could be used as a small flashlight in a pinch. If these features and the build technique look familiar it’s because of [Markus’] tiny MSP430 clock which he was showing around last year.

Both of his tiny clocks are quite impressive for their size, features, and power consumption. Some of the other clocks we’ve featured recently include robot clocks, clocks for social good, and clocks that are not just clocks (but still won’t explode). We’re suckers for a good clock project here, so keep sending them in!

Continue reading “Tiny PIC Clock is Not a Tiny Bomb”

A Kitchen Timer Fit for MacGyver

Here’s a project that you don’t want to bring into an airport, ship through the mail, or probably even remove from your home. [ProjectGeek] has built himself a simple kitchen timer masquerading as a bomb. The build is actually pretty simple, but the end result is something that would look at home in a Hollywood action flick.

The timer circuit is built from four simple components. An 8051 microcontroller board is used as the primary controller and timer. The code is available on GitHub. This board is attached to a another board containing four momentary push buttons. These are used to program the timer and to stop the buzzing. Another board containing four 7-segment displays is used to show the remaining time on the timer. A simple piezo buzzer is used to actually alert you when the timer has run out. All of these components are connected with colorful jumper wires.

The physical part of this build is made from easily available components. Old newspapers are rolled up to form the “explosive” sticks. These are then covered in plain brown paper ordinarily used to cover text books. The rolls are bundled together and fixed with electrical tape. The electronics can then be attached to the base with some hot glue or double-sided tape.

Hackaday Links: March 25, 2013

Illegal, yet impressive


Want a soda? Just grab a robot, shove it in a vending machine, and grab yourself one. This video is incredibly French, but it looks like we’ve got a custom-built robot made out of old printers and other miscellaneous motors and gears here. It’s actually pretty impressive when you consider 16 ounce cans weigh a pound.



Okay, we got a lot of emails on our tip line for this one. It’s a group buy for a programmable oscillator over on Tindie. Why is this cool? Well, this chip (an SI570) is used in a lot of software defined radio designs. Also, it’s incredibly hard to come by if you’re not ordering thousands of these at a time. Here’s a datasheet, now show us some builds with this oscillator.

Chiptune/keygen music anywhere


[Huan] has a co-loco’d Raspi and wanted a media server that is available anywhere, on any device. What he came up with is a service that streams chiptune music from your favorite keygens. You can access it with Chrome (no, we’re not linking directly to a Raspberry Pi), and it’s extremely efficient – his RAM usage didn’t increase a bit.

Take it on an airplane. Or mail it.


[Alex]’s hackerspace just had a series of lightning talks, where people with 45-minute long presentations try to condense their talk into 10 minutes. Of course the hackerspace needed some way to keep everything on schedule. A simple countdown timer was too boring, so they went with a fake, Hollywood-style bomb. No, it doesn’t explode, but it still looks really, really fake. That’s a good thing.

Printers have speakers now?


[ddrboxman] thought his reprap needed a nice ‘print finished’ notification. After adding a piezo to his electronics board, he whipped up a firmware hack that plays those old Nokia ringtones. The ringtones play over Gcode, so it’s possible to have audible warnings and notifications. Now if it could only play Snake.

Dropping the nitrogen bomb in science class

We took Geology in college. It was pretty cool learning about the hardness of different minerals. But there were no explosions involved. We’re not entirely sure what this class is, perhaps Chemistry, maybe Physics, but we want in. [Dr. Roy Lowry] wows the class with a bomb made of liquid nitrogen. The demonstration was part of his lecture at Plymouth University.

A small explosion is cool, but [Roy] knows how to add the wow factor. To make the bomb he filled a one liter plastic bottle about 1/3 of the way with liquid nitrogen. After tightly sealing the cap it was dropped in that garbage can which had a pool of warm water in it. Before quickly running away he and his assistant dumped a few garbage bags of ping-pong balls on top of it all. When the plastic bottle bursts under the pressure of the expanding gas it sends the garbage can about six feet into the air and floods the room with bouncing white balls. See the whole presentation for yourself in the clip after the break and don’t forget the sound so you can catch the oohs and aahs at the end.

Looks like a Hackerspace recruitment tool if we’ve ever seen one.

Continue reading “Dropping the nitrogen bomb in science class”

Adding payload to an RC cessna

For just a few bucks you can add a payload to your flying toys. In this case it’s a Cessna RC plane which now has an added surprise. The first thing to be dropped was a parachute with a weight on it (for testing purposes). But there are hints of future projects that will use the same system for different purposes.

As you can see in the image above, the system depends on an additional compartment attached to the bottom of the plane. It was built from foam board to keep the weight down and connects using rare earth magnets. The bottom of the enclosure acts as the door, hinging on a servo motor with a bamboo skewer as the axle. So far the test drops have gone pretty well, but some more work needs to be done with the parachute design. It only opens about 60% of the time. We can sympathize, having had to work out some of our own parachute issues.

Don’t miss video from the plane as well as the ground after the break.

Continue reading “Adding payload to an RC cessna”