Hacker sends this through the mail to record a video of the process

hacked-hardware-sent-through-mail

[Ruben van der Vleuten] wanted to get a look at the adventure a package experiences when shipped from one place to another. So he threw together this mishmash of components to record the experience. We certainly enjoyed watching the fast motion video found after the break. We wonder what the shipping agency thinks about this sort of thing?

Camera, digital storage, and battery technology have gotten to the point that it’s both cheap and easy to do this sort of surveillance. But there are a few logistical things that [Ruben] took into account to make this work quite well. First off, he need to hide the camera in a way that would ensure the package didn’t look suspicious. He ended up writing his name on the side of the box and boring a hole through one of the black letters which is smaller than a pea and very hard to spot. To make sure he wasn’t recording a ton of empty (dark) frames he also included electronics to sense motion. When the package is moving the video is always rolling. when not moving the hardware wakes for just 3 seconds every minute to shoot video.

[Read more...]

Building a vehicle parking camera

rpi-backup-camera

We’re never really sure what to call these things. When we say “back up camera” it sounds distinctly like a redundancy system for when the primary camera fails to work. But it is used for when you move in reverse in an automobile. [Jeremy Blythe] built the distance sensing video system using a Raspberry Pi board as the brain.

The flexibility of Linux and the power of the RPi board ended up making it pretty easy to get everything working together. He’s using a Microsoft Lifecam Cinema HD camera, which connects to one of the USB ports on the board. Just above that you can see the infrared distance sensor which is connected to the RPi’s GPIO header using one of Adafruit’s Pi Cobbler breakout boards. This also facilitates the connection to the 176×220 color LCD screen.

In the video after the break you can see [Jeremy] testing out the system by moving his hand in front of the sensor. Python is used to grab the image from the camera, draw a circle on it, and overlay the distance in centimeters at the bottom. Once his hand is within 30cm the overlay turns red and the work STOP is displayed. Pretty neat!

[Read more...]

DIY $6 serial cable for vintage Apple QuickTake cameras

diy-serial-cable-for-vintage-apple-cameras

Knowing he was a guy who liked electronics and taking things apart, one of [Erik]‘s friends sent him a vintage Apple QuickTake 100/150 digital camera as a bit of a joke. [Erik] enjoyed the gift, but since his friend hadn’t sent the necessary serial cable he really couldn’t do that much with it. He searched online only to discover the cable is very difficult to find these days, and thus very expensive. So, being the handy guy he is, he built his own.

Starting with an Apple MiniDin8 Male cable, he cut off one end and attached the wiring to a RJ45 connector. That got plugged into a modular adapter with a DB9 Female Plug end and wired up. The procedure required no soldering, and cost less than $6. Awesome.

Unfortunately the lack of serial cable isn’t the only problem he faced. QuickTake isn’t compatible with newer Apple computers that use Intel. You have to either have a much older Mac, or use a Windows XP emulator. If that wasn’t bad enough, the cameras only want to save photos in QuickTake file format. Luckily, [Erik] documents how he overcome all these issues in his post.

[Thanks Erik]

LiFePO4 batteries work much better in a camera than NiMH

SAMSUNG

We agree with [Zapmaker] that Canon cameras chew through nickel metal hydride batteries. But we’re not going to use Alkaline because we think it’s wasteful. His solution is to use a battery that has a higher voltage rating. What you see here is a single lithium iron phosphate cell paired with a dummy cell to increase life between charges.

The reason that NiMH batteries don’t last very long is that they’re only rated at 2.4V. It won’t take long for that voltage to drop below the camera’s cutoff threshold since they didn’t start very high to begin with. But a single LiFePO4 cell has the same form-factor but produces 3.2V and maintains voltage well through it’s discharge cycle.

The size is right, but using one cell won’t work by itself. He built a filler for the other slot which is just a wood dowel with a screw all the way through it. The point was ground down and a bit of foil added to ensure a proper connection. We’d be interested to hear back about how this performs over the long term.

Camera trick lets you see sound waves in falling water

24hz-water-camera-trick

From this still image you’d think the hose dispensing the water is being moved back and forth. But watch the video after the break and you’ll see the hose is quite steady, as is the standing wave of water. It’s bizarre to be sure. Knowing how it works makes cognitive sense, but doesn’t really diminish the novelty of the demonstration.

This is the second time [Brasspup] has posted a video of this phenomenon. The newest version does a great job of showing several different patterns. But even the first segment from a year ago, which has over 4 million hits, shows the water moving against gravity. We also saw a similar rig in a links post a year ago.

We’d call it an optical illusion but it’s really more of a technological illusion. The water is falling past a sub-woofer speaker which is tuned to 24 Hz. At the same time, the camera filming the demonstration is capturing 24 frames per second. As was mentioned then, it’s much like flashing a light to freeze the water in mid-air. But the flashing of the frames is what causes this effect.

[Read more...]

Camera adapter for a microscope

camera-adapter-for-stereo-microscope

[Steve] really has a nice microscope setup in his lab now that he built a video camera adapter for his stereo microscope. The image above shows the magnified view of the circuit board on the LCD screen behind it. This lets him work without needing to be in position to look through the eye pieces. The hack is a perfect complement to the custom stand he fabricated for the scope.

The camera attachment can be seen attached to the right lens of the scope. It’s an old security camera which he already had on hand. The stock lens wasn’t going to bring the picture into focus, but he had some different optics on hand and one of them fit the bill perfectly. The rest of the project involves fabricating the adapter ring on his lathe. It slips perfectly over the eyepiece and even allows him a bit of adjustment to get the focal length right. The best view of this is shown off in the video after the break.

[Read more...]

A real thermal imaging camera for $300

mu_crosshair

If you want to check your house for hot air leaks, take pictures of the heat coming off a rack of equipment, or just chase the most dangerous animal, [Arnie], through the jungles of central america, a thermal imaging camera is your friend. These devices normally cost a few thousand dollars, but the team behind the Mu Thermal Camera managed to get the price down to about $300.

The basic idea behind the Mu Thermal Camera is overlaying the output of an infrared thermopile – basically, an infrared camera – on top of the video feed of a smart phone’s camera. This is an approach we’ve seen before and something that has even been turned into a successful Kickstarter. These previous incarnations suffered from terrible resolution, though; just 16×4 pixels for the infrared camera. The Mu thermal camera, on the other hand, has 160×120 pixels of resolution. That’s the same resolution as this $2500 Fluke IR camera. After the indiegogo campaign is over, the Mu camera will eventually sell for $325.

We have no idea how the folks behind the Mu camera were able to create a thermal imaging with such exceptional resolution at this price point. The good news is the team will be open sourcing the Mu camera after their indiegogo run is over. W’e’d love to see those docs now, if only to figure out how a thousand dollars of infrared sensor is crammed into a $300 device.