An exploded diagram of the spot welder. Shown are the capacitor bank, trigger, 12 V relay, DC power input, power out, step up converter, voltmeter, industrial SCR module, and capacitor bank.

Hackaday Prize 2022: A Not-So-Smart Spot Welder

DIY spot welders often use high-powered components that can be a bit frightening, given the potential for dangerous malfunctions. [Wojciech “Adalbert” J.] designed his capacitive discharge spot welder to be safe, easy to build, and forego the microcontroller.

Many projects work great with just a single Li-ion cell, but when you need more power, you’ve got to start connecting more cells together into a battery. [Wojciech]’s spot welder is designed to be just powerful enough to weld nickel tabs onto a cell without any overkill. The capacitor bank uses nineteen Nichicon UBY 7500uF/35V capacitors, all wired in parallel using solder wick saturated with solder. They sit atop on a perfboard with metallicized holes to carry the high current.

[Wojciech] has detailed every step of building the welder, including changes to the off-the-shelf relay board and adding a potentiometer to the step-up converter board. The level of detail makes this seem like a good starting place if you’re hoping to hop into the world of DIY spot welders. Safe is always a relative term when dealing with high powered devices, so be careful if you do attempt this build!

DIY spot welders have graced these digital pages many times, including this one built with safety in mind, and this other one that was decidedly not.

This (mostly) Transparent Tesla Coil Shows It All

You’d be forgiven for assuming that a Tesla coil is some absurdly complex piece of high-voltage trickery. Clarke’s third law states that “any sufficiently advanced technology is indistinguishable from magic”, and lighting up a neon tube from across the room sure looks a lot like magic. But in his latest Plasma Channel video, [Jay Bowles] tries to set the record straight by demonstrating a see-through Tesla coil that leaves nothing to the imagination.

Of course, we haven’t yet mastered the technology required to produce transparent copper wire, so you can’t actually see through the primary and secondary coils themselves. But [Jay] did wind them on acrylic tubes to prove there aren’t any pixies hiding in there. The base of the coil is also made out of acrylic, which lets everyone see just how straightforward the whole thing is.

Beyond the coils, this build utilizes the DIY high-voltage power supply that [Jay] detailed a few months back. There’s also a bank of capacitors mounted to a small piece of acrylic, and a clever adjustable spark gap that’s made of little more than a few strategically placed pieces of copper pipe and an alligator clip. Beyond a few little details that might not be obvious at first glance, such as grounding the secondary coil to a layer of aluminum tape on the bottom of the base, it’s all right there in the open. No magic, just science.

[Jay] estimates this beauty can produce voltages in excess of 100,000 volts, and provides a demonstration of its capabilities in the video after the break. Unfortunately, before he could really put the new see-through coil through its paces, it took a tumble and was destroyed. A reminder that acrylic enclosures may be pretty, but they certainly aren’t invulnerable. With the value of hindsight, we’re sure the rebuilt version will be even better than the original.

If you’d rather not have your illusions shattered, we’ve seen plenty of complex Tesla coils to balance this one out. With witchcraft like PCB coils and SMD components, some of them still seem pretty magical.

Continue reading “This (mostly) Transparent Tesla Coil Shows It All”

BAMF: Hard Drive Platter Launcher Among All-Time Favorites

The hard drive platter launcher that [Krux] built has been among my all-time favorite builds and I am so excited that he is showing it off at this year’s Bay Area Maker Faire. At its core the concept is quite simple; dump a large amount of current through a coil all at once, and the magnetic current generated spontaneously repels the aluminum hard drive platter. The devil is in the details and this is where [Krux’s] work really shines.

Continue reading “BAMF: Hard Drive Platter Launcher Among All-Time Favorites”

Box ‘o Bangs, A 2,180J Capacitor Bank

What happens when you wire up 16 capacitors? Sixteen 2500V 40uF capacitors to be precise… [Lemming] calls it the Box ‘O Bangs. Theoretically it outputs 4000A at 2500V for a split second.

They bought the capacitors off of eBay, and they appear to be good quality BOSCH ones, straight from Germany. They were apparently used for large-scale industrial photo-flashes, but who knows since they’re from eBay.

Soldering it all together proved to be a challenge, as once they realized just how many amps this thing was going to put out, they needed some thick wire. It looks like about 2ga wire, which, spoiler alert, still isn’t enough for 4000A — but since it’s only for a split second it seems to do fine.

Once everything was built, it was time for some scientific tests — what can we put between the leads to explode? Stay tuned for some slow-motion glory.

Continue reading “Box ‘o Bangs, A 2,180J Capacitor Bank”

Subwoofer Vortex Cannon: 300V Of “Thwup!”

Need a cool toy for your kids? How about something with a bunch of fun fluid dynamics and a tinge of higher-than-average-voltage danger? Did we mention the subwoofer and bank of high-voltage capacitors? Have we got the project for you: [Robert Hart]’s vortex cannon design.

We’ve seen vortex cannons before, where you usually fix a balloon to the back of a trash can. Pull on the balloon membrane and then let it go with a snap, and it sends out a swirling donut of high-pressure air that travels surprisingly far. It’s like smoke rings, but amped up a bit.

[Robert]’s addition is to bolt on a high-power subwoofer in place of the balloon’s rubber membrane, and generate the air pulse by dumping a capacitor bank into the speaker.

6699171432446530681The circuit design is a bit more clever than we thought at first. The bottom half is a voltage inverter followed by a diode bridge rectifier that essentially makes 320V DC (peak) out of 12V, and stores this in four fairly large capacitors. A pushbutton activates a relay that dumps the capacitors through the speaker.

On top of the circuit is a -12V voltage inverter. Just before firing, the speaker is pulled back a little bit by applying this -12V to the speaker, and then the relay is triggered and the capacitors dump, shooting the speaker cone forward.

6973681433156869012[Robert] is still developing and testing the device out, so if you’re curious or just want to say hi, head on over to Hackaday.io and do so! Be sure to check out his videos. The smoke tests are starting to look good, and we love the control box and high-voltage warning stickers.