Artificial Muscles Use Carbon Nanotube Sheets

carbon nanotube being turned into aerogel sheet

Light as air, stronger than steel and more flexible than rubber. Sound like something from the next installment of the Iron Man series? [Tony Stark] would certainly take notice of this fascinating technology. Fortunately for us, it does not come from the studios of Hollywood, but instead the halls of the NanoTech Institute at the University of Texas.

Professor [Ray Baughman] and his team of scientists at the NanoTech Institute have developed a type of artificial muscle through a process of making aerogel sheets by growing carbon nanotubes in a forest like structure. Think of a vertical bamboo forest, with each bamboo stem representing a single carbon nanotube. Now imagine that the individual bamboo stems were connected together by much smaller horizontal threads. So that if you dislodge the bamboo and began to pull, the threads would pull the others, and you would get this sheet-like structure.

These aerogel sheets of carbon nantubes have some truly science fiction like properties. They can operate from 1,600 degrees centigrade to near absolute zero. If you inject a charge, each nanotube will be repulsed from one another, expanding some 220% of the sheet’s original size. Your muscles do this at roughly 20 – 40%. Stick around after the break for a video demonstration of these carbon nanotube aerogel sheets being made and demonstrated.

Thanks to [Steven] for the tip!

[Read more...]

Can a Kickstarter project actually build a space elevator?

It’s the stuff that Science Fiction is made of: an elevator that climbs its way into space rather than needing a rocket to get there. Can it be done? No. But this Kickstarter project aims to fund research that will eventually make a space elevator possible. They’re already way over their goal, and plan to use the extra funds to extend the reach of the experiments.

A complete success would be a tether that reaches into space, held taught by a weight which is pulled away from earth by centrifugal force. That’s not really on the radar yet (last we heard humans weren’t capable of producing a substance strong enough to keep the tether from snapping). What is in the works is a weather balloon supporting a ribbon which a robot can climb. The team isn’t new to this, having built and tested several models at University and then in a start-up company that closed its doors a few years ago. Now they’re hoping to get a 3-5 kilometer ribbon in the air and to build a new robot to climb it.

For now we’ll have to be satisfied with the 1000 ft. climb video after the break. But we hope to see an Earth-Moon freight system like the one shown in the diagram above before the end of our lifetimes.

[Read more...]

Check it out, my clothes are electric. No, seriously

Someday you may be able to use your crotch or armpits to recharge that cellphone. Heck, maybe there won’t even be a battery, just a capacitor which gets its juice from Power Felt, a fabric that converts body heat to electricity.

Now we mention the nether-regions because it’s funny, but also because it makes the most sense. Researchers have developed a fabric containing carbon nanotubes used in a way that generates electricity based on a temperature differential. We figure the areas on the body that have high heat loss would be the most efficient locations for the fabric since it is currently extremely expensive to produce (the hope is that mass-production would reduce cost by orders of magnitude). So we think battery-charging briefs are a definite possibility.

What we see here is a nano-scale Peltier electricity generator. It’s the same concept as this candle-based generator, except the increased efficiency of the Power Felt lets your wasted body heat take the place of the flame.

There’s a white paper on the topic but you can’t get at it without surrendering some [George Washingtons].

[via Reddit and Megadgets]

Space elevator a real possibility

The space elevator may be a very real possibility within our lifetimes. Previously the stuff of science fiction novels, scientists and engineers around the world will continue their discussion at a conference in Japan this November. The space elevator’s basic design would include a cable that is anchored to the Earth’s surface, and on the other end, tens of thousands of kilometers away, a counterweight for balance. The space elevator could be used to solve many different problems, from nuclear waste disposal to powering homes with solar panels.

The technology driving the development of the space elevator is the carbon nanotube. Its lightweight properties and tensile strength, over 180 times stronger than steel cable, make it the ideal cable for the space elevator. Currently there are several logistical problems, which range from designing a carbon nanotube strong enough to support the elevator to finding an ideal site to design and build the elevator, which would require international consensus and input. Several organizations are working on space elevator designs, and NASA is holding a $4 million Space Elevator Challenge to encourage designs.

Follow

Get every new post delivered to your Inbox.

Join 94,103 other followers