Older Nissan Leafs Lose Their App, Are They The First Of Many?

There was a time when all you needed to use your car was a key. On older vehicles it was a traditional metal key, on more recent ones it had some kind of RFID chip for the immobilizer. As vehicles have become more and more computers on wheels though, the key has disappeared in favor of an electronic key using RF, and in many cases a smartphone application. It’s even used as a selling point: “Look how amazing our car is, you open it with an app!”

Now the obvious flaw is beginning to show in this strategy, as Nissan Leafs made before 2016 and on the road in the UK are to have their app support withdrawn. The manufacturer cites the withdrawal of 2G services, but this seems a little fishy when you consider that the older networks will continue to exist in some form until 2030.

Frankly, there’s part of us that welcomes this news. On one hand, it affects relatively few early adopters. But at the same time, it has the promise of finally educating a gullible public that while a car may last into its second or third decade, the superfluous technology with which it has been loaded probably won’t. If it makes consumers clamor for longer support, or better built vehicles, it can only be a good thing. We’re guessing stories like this will become increasingly common in the next few years — luckily for Leaf owners, its relatively trivial loss of functionality won’t be the worst among them.

If the carmakers have forgotten how to make a vehicle without the dross, we’d be delighted to remind them.

Header: Kārlis Dambrāns, CC BY 2.0.

Thanks [CampGareth] for the tip.

When Tail Lights Lose Touch With Reality

To study the history of the automobile is to also be a student of technological progress — as with each decade’s models come new innovations to make them better handling, more corrosion-resistant, faster, more efficient, or whatever the needs of the moment dictate. But sometimes that technological advancement goes awry and works against the motorist, making for a vehicle that’s substantially worse than what went before. [FordTechMakuloco] has a video with an example in a Ford pickup, which we believe deserves to be shared.

The problem with the vehicle was simple enough, indeed it’s one we’ve had in the past ourselves. Water got into a tail light, and corroded some connectors. The difference with this Ford though was that such a simple fault took out the whole car, and that the fix for a simple tail light cost $5600. The first was due to a vehicle-wide CAN bus going down due to the electrical short, and the second was due to the assembly containing an assortment of wiring and modules which couldn’t be replaced separately. These included some form of side-facing parking radar, a component unnecessary for operation of the light itself. Some relatively straightforward design and component supply decisions such as separating subsystems across multiple CAN busses, ensuring individual modules are separately available, and even designing connectors to face downwards and self-drain, could have fixed it, but the automaker chose instead to build in some planned obsolescence. Would you buy a Ford truck after seeing the video below the break?

We’ve written here before about how automotive design has taken this wrong path, and even advanced a manifesto as to how they might escape it. This Ford tail light seems to us an egregious example of electronics-as-the-new-rust rendering what should be a good vehicle into a badly designed piece of junk, and honestly it saddens us to see it. Oddly, there was once a time when a Ford truck was about as good as you could get.

Continue reading “When Tail Lights Lose Touch With Reality”

Ask Hackaday: Why Do Self Driving Cars Keep Causing Traffic Jams?

Despite what some people might tell you, self-driving cars aren’t really on the market yet. Instead, there’s a small handful of startups and big tech companies that are rapidly developing prototypes of this technology. These vehicles are furiously testing in various cities around the world.

In fact, depending on where you live, you might have noticed them out and about. Not least because many of them keep causing traffic jams, much to the frustration of their fellow road users. Let’s dive in and look at what’s going wrong.

Continue reading “Ask Hackaday: Why Do Self Driving Cars Keep Causing Traffic Jams?”

Build A Better Mousetrap… But It Better Be Better!

As creative problem solvers, we like to “think outside the box,” and we should strive for that. But what happens if your strange idea isn’t kept in check by cooler heads? There is a real danger — especially if you work alone — to falling so in love with your idea, that you lose sight of what it really means to be better.

Case in point. The self-parking car. Well, not the modern variant, which seems to work pretty well. But did you know that the self-parking car was invented in the 1930s and used an extra fifth wheel? Hard to imagine? See the video below. History tells us that the idea didn’t catch on.

Continue reading “Build A Better Mousetrap… But It Better Be Better!”

The J1772 Hydra Helps You Charge Two EVs At Once

There are plenty of electric vehicle (EV) chargers out there that are underutilized. This is particularly common where older EVs are involved, where the cars may only be able to charge at a few kW despite the charger being capable of delivering more. [Nick Sayer] regularly found 6.6 kW chargers being used by vehicles that could only draw down 3.3 kW at his work. Thus, he built the J1772 Hydra as a nifty double-adapter to charge two cars at once.

The Hydra comes in two versions. One is a “splitter,” which is designed to be plugged into an existing J1772 AC charger. The other is a version designed for permanent installation to an AC power supply as an EV charger in its own right. Either way, both versions of the Hydra work the same way. In “shared” mode, the Hydra splits the available AC power equally between both cars connected to the charger. When one completes, the other gets full power. Alternatively, it can be set up in “sequential” mode, allowing one car to first charge, then the other. This is great when you have two cars to charge overnight and don’t want to wake up to shift the plugs around.

It’s a neat hack that could be useful if you’re running older EVs that rely on slower AC charging. We’ve seen other DIY EV chargers before, too. Expect hacking in these areas to become more commonplace as EVs grow in popularity.

EV Chargers Could Be A Serious Target For Hackers

Computers! They’re in everything these days. Everything from thermostats to fridges and even window blinds are now on the Internet, and that makes them all ripe for hacking.

Electric vehicle chargers are becoming a part of regular life. They too are connected devices, and thus pose a security risk if not designed and maintained properly. As with so many other devices on the Internet of Things, the truth is anything but. 

Continue reading “EV Chargers Could Be A Serious Target For Hackers”

Spoofing LIDAR Could Blind Autonomous Vehicles To Obstacles

Humans manage to drive in an acceptable fashion using just two eyes and two ears to sense the world around them. Autonomous vehicles are kitted out with sensor packages altogether more complex. They typically rely on radar, lidar, ultrasonic sensors, or cameras all working in concert to detect the road conditions ahead.

While humans are pretty wily and difficult to fool, our robot driving friends are less robust. Some researchers are concerned that LiDAR sensors could be spoofed, hiding obstacles and tricking driverless cars into crashes, or worse.

Continue reading “Spoofing LIDAR Could Blind Autonomous Vehicles To Obstacles”