Hackaday Links Column Banner

Hackaday Links: October 8, 2023

Too much of a good thing is generally a bad thing, but a surfeit of asteroid material is probably a valid exception to that rule. Such was NASA’s plight as it started to unpack the sample return capsule recently dropped off by the OSIRIS-REx spacecraft as it flew by Earth, only to discover it was packed to overflowing with samples of asteroid Bennu. The spacecraft, which arrived at Bennu in 2018 and spent a good long time mapping the near-Earth asteroid, apparently approached its carefully selected landing site a bit too energetically and really packed the sample container full of BennuBits™ — so much so that they could actually see sample shedding off into space before stowing it for the long trip back to Earth. The container is now safely in the hands of the sample analysis team, who noted that everything in the TAGSAM (Touch and Go Sample Acquisition Module), even the avionics deck, is covered with black particles, each precious one of which needs to be collected and cataloged. The black stuff is especially interesting to planetary scientists, as it might be exactly what they were after when they selected Bennu, which may have broken off a much larger carbon-rich asteroid a billion or so years ago. It’ll be interesting to see if these interplanetary hitchhikers have anything to tell us about the origin of life in the solar system.

Continue reading “Hackaday Links: October 8, 2023”

Open Source Tracker Keeps An Eye On Furry Friends

Most of the time, you’ll know where your cats are — asleep on the bed about 23.5 hours a day and eating or pooping the rest of the time. But some cats are more active than others, so there’s commercial options for those who want to keep tabs on their pet. Unfortunately, [Sahas Chitlange] didn’t like any of them, so he designed and built his own open source version: FindMyCat.io.

The system is in two parts: a module that fits onto a cat collar, and a home station that, well, stays at home. It offers a variety of tracking modes. In home mode, the home station signals the collar every 10 seconds, which stays in a deep sleep most of the time. If the collar doesn’t get a signal from the home station, it switches to ping mode, where it will wait for a signal from the FindMyCat over the LTE-M connection and report its location.

Finally, the app can set the collar to Lost Kitteh mode, where the collar will send a location to the app every seven minutes or thirty seconds. The collar also supports a direction-finding feature, using the ultra wideband (UWB) feature of recent Apple iPhones to point you in the direction and distance of the tracked cat.

The collar is built around a Nordic Semiconductor NRF-9160, a System in a Package (SiP) that does most of the heavy lifting as it includes GPS, an LTE-M modem, and an ARM processor. One interesting feature here: [Sahas] doesn’t make his antennas on the PCB, but instead uses an Ignion NN03-310, an off-the-shelf antenna that is already qualified for LTE-M use. That means this system can be connected to almost any LTE-M network without getting yelled at for using unqualified hardware and making the local cell towers explode.

The collar also includes a DWM3001CDK ultrawideband (UWB) module used for the locator feature. The accompanying app uses this and Apple’s UWB support to show the user which direction the cat is in, and how far away it is. The app isn’t in the Apple App Store yet, so you’ll need to sign up for an Apple Developer account to use it. We’d love to hear from anyone who takes it for a test drive with their own pet.

Continue reading “Open Source Tracker Keeps An Eye On Furry Friends”

An automatic laser turret playing with a cat.

Entertain Your Cats Automatically With LazerPaw

Most of us would agree that kittens are very cute, but require lots of attention in return. What would you do if you adopted three abandoned cats but didn’t have all day to play with them? [Hoani Bryson] solved his problem by building LazerPaw — an autonomous, safe way to let your cats chase lasers.

Having recently tinkered with computer vision in the form of OpenCV, [Hoani] decided he would make a laser turret for his cats to play with. An infrared camera, used so that the LazerPaw works in the dark, is mounted to the laser and the Raspberry Pi. These electronics are then mounted on a servo-based pan/tilt module, which is in turn mounted with two smartphone clamps to the ceiling. That way, when the cats chase the laser, they will be looking away from the beam source. Additionally, if the device is aiming directly at a cat, the laser is turned off. Finally, [Hoani] added some NeoPixels with an Arduino-based controller for extra hacker vibes.

The LazerPaw’s software takes in a 30 FPS stream from a webcam, scales it down for performance, and applies a threshold filter to it. When a black pixel, which is assumed to be a cat, is detected, it “pushes” the camera away from it depending on how close to the laser it is. The effect of this is that every time a cat catches up to the laser, it moves away again. The processed images are also sent to an interactive website for remote cat playtime. Finally, there is also a physical start button so you don’t need WiFi to use it.

Is your cat more of a sunbather than a deadly murder beast? Maybe it’ll like this cat chair that follows the sun.

Continue reading “Entertain Your Cats Automatically With LazerPaw”

Litter Box Sensor Lets You Know Exactly What The Cat’s Been Up To

In our experience, there’s rarely any question when the cat uses the litter box. At all. In the entire house. For hours. And while it may be instantly obvious to the most casual observer that it’s time to clean the thing out, that doesn’t mean there’s no value in quantifying your feline friend’s noxious vapors. For science.

Now of course, [Owen Ashurst] could have opted for one of those fancy automated litter boxes, the kind that detects when a cat has made a deposit and uses various methods to sweep it away and prepare the box for the next use, with varying degrees of success. These machines seem like great ideas, and generally work pretty well out of the box, but — well, let’s just say that a value-engineered system can only last so long under extreme conditions. So a plain old-fashioned litterbox suffices for [Owen], except with a few special modifications. A NodeMCU lives inside the modesty cover of the box, along with a PIR sensor to detect the cat’s presence, as well as an MQ135 air quality sensor to monitor for gasses. It seems an appropriate choice, since the sensor responds to ammonia and sulfides — both likely to be present after a deposit. Continue reading “Litter Box Sensor Lets You Know Exactly What The Cat’s Been Up To”

Robotic Fox Is Part Dog, Part Cat — Just Like The Real Thing

Foxes are cat software running on dog hardware, or so they say. And [Will Cogley] seems to have taken that to heart with this 3D-printed robotic fox, which borrows heavily from projects like Boston Dynamics Spot robodog. True, the analogy breaks down a bit when you include MIT’s Cheetah on the inspiration list, but you get the point.

Very much a work in progress — [Will]’s RoboFox lacks both a head and a tail, which he aims to add at some point — there are some interesting design elements on display here. Whereas commercial quadruped robots tend to use expensive harmonic drives for the legs, [Will] chose simpler, cheaper hobby servos for his fox’s running gear. Each leg has three of them — one each for the upper and lower leg, and another that moves the whole leg in and out relative to the body. The dual-servo design for the leg is particularly interesting — one servo drives the upper leg directly, while the other servo drives the lower leg through a gear drive and a captive bearing arrangement connected to a parallelogram linkage. The result is a quite compact assembly that still has twelve degrees of freedom, and isn’t anywhere near as “floppy” as you might expect from something driven by hobby servos.

The video below shows off the design details as well as some of the fox’s construction, including some weirdly anatomically correct poses while it’s on its back. The fox is still getting its legs — you can see a few times when the servos get the jitters, and the umbilical is clearly a hindrance for such a lightweight robot. But [Will] has made a great start here, and we’re keen to see RoboFox progress. Although we’re not sure about giving the future head animatronic eyes.

Continue reading “Robotic Fox Is Part Dog, Part Cat — Just Like The Real Thing”

Simple Wi-Fi Cat Door Solves The Extra Critter Problem, And Nothing More

Anyone with an outdoor cat in their life knows their propensity for bringing home offerings, in the form of critters in various stages of the process of becoming ex-critters. And anyone with a hacker in their life knows that there’s a tendency to throw technology at this problem. But sometimes, the simplest solutions are the best.

Take this simple stepper-powered cat door lock. For [Jason Winfield], the essential problem with his outdoor cat’s late-night demands for reentry was having to manually unlock the cat door after a quick visual check that no midnight snacks were along for the ride. Such activity tends to make it hard to get back to sleep. One natural reaction to this would be to completely automate the process with machine learning to recognize the offering and deny entry; we’ve seen exactly that before, after all. But recognizing that the disruptive part was the getting up to check bit, [Jason] just whipped up a simple stepper-driven lock with an ESP8266 microcontroller. With a 3D-printed case and a battery pack, and a nearby Wi-Fi camera, the lock denies entry to the cat until he gets a look at it, at which point he simply hits the lock’s webpage to unlock the door. The video below would show the lock in action, except the cat buggered off once it got a whiff of the doings. Cat’s gonna cat.

What we appreciate about this project is its simplicity. It solves the problem with the minimum feature set, which is something we see too little of sometimes. It’s also got some nice ideas, like the non-captive bolt that can be removed to unlock the door if the battery dies. Smart thinking, [Jason], and sweet dreams.

Continue reading “Simple Wi-Fi Cat Door Solves The Extra Critter Problem, And Nothing More”

Monitoring A Cat’s Litter Box Usage With AI

[Estefannie] is a proud cat owner, but one of her cats has a bad habit of eating plastic. That means she needs to keep an eye on that cat’s bowel movements, but with two cats in the house, it’s difficult to know who did what. Thus, she whipped up an AI system to log her cats bathroom visits and give her peace of mind.

It’s not the most glamorous project — [Estefannie] notes she took over 50,000 pictures of her cats using the litterbox to train Microsoft Azure’s Custom Vision model. But after some work, it could readily identify which cat was using the litter box when fed images from a NoIR camera. The system then differentiates between number 1 and number 2 via the time the cat spends in the litter box. It’s not perfect, but it works.

The Raspberry Pi runs a Node.JS server to collate the results, paired with a website front-end for easy data display. That way, anyone on [Estefannie’s] WiFi network can see who did what from a browser. We’ve seen cat litter boxes put on the Internet of Things before, and we’ve even seen people hack litterbox DRM, too.

Continue reading “Monitoring A Cat’s Litter Box Usage With AI”