Amazon Dash Button Finds Your Phone

This scene replays quite often in our house: my wife has misplaced her cell phone so she asks me to call her. But where did I leave my cell phone? And the race is on! Who will find their phone first to call the other?

[Zapta] solves this problem with his Phone Finder. The system comes in two parts: a base station with WiFi that’s also connected to the house’s phone line, and an arbitrary number of Amazon Dash buttons that trigger dialing commands.

[Zapta] presses a Dash button, which connects over WiFi to the base station. The base station recognizes the MAC address of the button, looks up and dials the corresponding missing cell phone. This solves the need-a-phone-to-find-a-phone problem very neatly, and since Dash buttons are dirt cheap they can be scattered liberally around the house. They’re clearly marked “his” and “hers” suggesting a similar domestic dynamic.

If we were implementing the base station from scratch, we’d probably try to figure out how a single ESP8266 could do all of the heavy lifting, but browsing through [Zapta]’s GitHub and the included circuit diagram (PDF) demystifies the phone-line interface.

In the early days of cordless phones, we used to joke that a solution to losing them would be to attach a string and tie them to the wall. (Luddites!) We’re glad to see [Zapta] take this project in the opposite direction — using technological overkill to solve the unintended problems that arise from technological progress.

Bunnie and Snowden Explore iPhone’s Hackability

[Bunnie Huang] and [Edward Snowden] have teamed up to publish a paper exploring the possibility of introspection on the iPhone.

A rendering of the proposed introspection device attached to an iPhone6
A rendering of the proposed introspection device attached to an iPhone6

The idea is that phones are increasingly complex and potentially vulnerable to all kinds of digital surveillance. Even airplane mode is insufficient for knowing that your phone isn’t somehow transmitting information. The paper looks at the various radios on the iPhone, going so far as opening up the device and reading signals at each of the chips for cell, WiFi, Bluetooth, GPS, and NFC to determine whether the chip itself is doing anything, regardless of what the screen says. This introspection can then be used to be confident that the phone is not communicating when it shouldn’t be.

The paper goes on to propose a device that they will prototype in the coming year which uses an FPC that goes into the phone through the SIM card port. It would contain a battery, display, buttons, multiple SIM cards, and an FPGA to monitor the various buses and chips and report on activity.

Significant hacking of an iPhone will still be required, but the idea is to increase transparency and be certain that your device is only doing what you want it to.

Hackaday Prize Entry: MyComm Handheld Satellite Messenger

We live in a connected world, but that world ends not far beyond the outermost cell phone tower. [John Grant] wants to be connected everywhere, even in regions where no mobile network is available, so he is building a solar powered, handheld satellite messenger: The MyComm – his entry for the Hackaday Prize.

The MyComm is a handheld touch-screen device, much like a smartphone, that connects to the Iridium satellite network to send and receive text messages. At the heart of his build, [John] uses a RockBLOCK Mk2 Iridium SatComm Module hooked up to a Teensy 3.1. The firmware is built upon a FreeRTOS port for proper task management. Project contributor [Jack] crafted an intuitive GUI that includes an on-screen keyboard to write, send and receive messages. A micro SD card stores all messages and contact list entries. Eventually, the system will be equipped with a solar cell, charging regulator and LiPo battery for worldwide, unconditional connectivity.

2016 will be an interesting year for the Iridium network since the first satellites for the improved (and backward-compatible) “Iridium NEXT” network are expected to launch soon. At times the 66 Iridium satellites currently covering the entire globe were considered a $5B heap of space junk due to deficiencies in reliability and security. Yet, it’s still there, with maker-friendly modems being available at $250 and pay-per-use rates of about 7 ct/kB (free downstream for SDR-Hackers). Enjoy the video of [Jack] explaining the MyComm user interface:

Continue reading “Hackaday Prize Entry: MyComm Handheld Satellite Messenger”

Free Radio On My Phone

If you have owned Android phones, there’s a reasonable chance that as the kind of person who reads Hackaday you will at some time have rooted one of them, and even applied a new community ROM to it. When you booted the phone into its new environment it’s not impossible you would have been surprised to find your phone now sported an FM radio. How had the ROM seemingly delivered a hardware upgrade?

It’s something your cellphone carrier would probably prefer not to talk about, a significant number of phones have the required hardware to receive FM radio, but lack the software to enable it. The carriers would prefer you to pay for their data to stream your entertainment rather than listen to it for free through a broadcaster. If you are someone capable of upgrading a ROM you can fix that, but every other phone owner is left holding a device they own, but seemingly don’t own.

Across North America there is a group campaigning to do something about this situation. Free Radio On My Phone and their Canadian sister organization are lobbying the phone companies and manufacturers to make the FM radio available, and in the USA at least they have scored some successes.

We have covered numerous attempts to use the DMCA to restrict people’s access to the hardware they own, but this story is a little different. There is no question of intellectual property being involved here, it is simply that the carriers would rather their customers didn’t even know that they had bought an FM radio along with their phone. If this bothers you, thanks to Free Radio On My Phone you can now join with others and find a voice on the matter.

It’s interesting to note that many FM radio chips also support a wider bandwidth than the North American and European 88 to 108MHz or thereabouts. In parts of Asia the broadcast band extends significantly lower than this, and the chipset manufacturers make products to support these frequencies. This opens up the interesting possibility that given a suitable app a cellphone could be used to receive other services on these frequencies. Probably more of a bonus for European radio amateurs with their 70MHz allocation than for North American residents.

Via CBC News. Cellphone image: By Rob Brown [Public domain], via Wikimedia Commons.

DIY Thermal Imaging Smartphone

We wish we had [Karri Palovuori] for a professor! As an exciting project to get incoming freshmen stoked on electrical engineering, he designed a DIY thermal-imaging smartphone that they can build themselves. It’s all built to fit into a sleek wooden case that gives the project its name: KAPULA is Finnish for “a block of wood”.

It’s just incredible how far one can push easily-available modules these days. [Karri] mounts a FLIR Lepton thermal camera, an LPC1768 Cortex M3 ARM micro, a GSM phone module, and a whole bunch of other cool stuff on a DIY-friendly two-sided board. The design uses 10 mil (0.25mm) trace and space, which is totally achievable with home etching methods. Copper wire bits fill up the vias. Did we mention he’s making the students do all this themselves? How awesome is that?

[Karri] expects that the students will tweak the software side of things. With additional onboard goodies like an accelerometer, microphone, speaker, SIM card, and USB, it’s not likely that they’ll get bored with the platform. He has a stretch hope that someone will take the hardware and modify it. That’s ambitious for sure, but it’s so cool that someone could.

We’ve seen some sophisticated DIY cellphones before, but this one rises above by being easily DIYable and including awesome extra features. Order parts now, and start etching. You could be sending thermal-photo tweets inside of just a few days.

Snooping on SIM Cards

[Nils Pipenbrinck] has been working on a very interesting problem. The SIM card in your cellphone talks to the contactless near-field communication (NFC) chip through a cool protocol that we’d never hear of until reading his blog: single wire protocol (SWP).

The SIM card in your cellphone has only a limited number of physical connections — and by the time NFC technology came on the scene all but one of them was in use. But the NFC controller and the SIM need full-duplex communications. So the SWP works bi-directionally on just one wire; one device modulates the voltage on the line, while the other modulates the current, essentially by switching a load in and out.

This signalling protocol makes snooping on this data line tricky. So to start off his explorations with SWP, [Nils] built his own transceiver. That lead [Nils] to some very sensitive analog sniffer circuit design that he’s just come up with.

If you get interested in SWP, you’ll find the slides from this fantastic presentation (PDF) helpful, and they propose a solution very similar to the one that [Nils] ended up implementing. That’s not taking anything away from [Nils]’s amazing work: with tricky high-speed analog circuitry like this, the implementation can be more than half of the battle! And we’ll surely be following [Nils]’s blog to see where he takes this.

Banner image: An old version and a new version of the transceiver prototype.

Thanks to [Tim Riemann] for the tip!

SprayPrinter Paints Your Wall, One Pixel At A Time

SprayPrinter is a neat idea. You download a cellphone app, point the camera at a wall, and sweep the wall with a spray can fitted with a (Bluetooth? WiFi?) remote-controlled valve. The phone knows where the nozzle is, and sprays a dot whenever it needs to “paint” the picture of your choosing on the wall.

sprayprinter-estonia-designboom-002-818x500While we’re not sure that we have the patience to paint our walls this way, it’s a cool effect. But even more, we love the idea of using the cellphone camera for location sensing. Many robotics applications do just this with an overhead camera.

Of course, we’d love more detail about how it’s done, but it’s not hard to guess that it’s either a bit of machine vision in the phone, or simpler still, that the spray-can housing has IR LEDs inside that the phone can lock onto. Indeed, the prototype version of the product shown here does look like it has an LED on the opposite side from the orange nozzle.

It wouldn’t be hard to take this to the next level, by adding enough IR LEDs that the camera in your phone can sense orientation as well as location. Heck, by measuring the distances between LEDs, you could probably even get a rough measure of depth. This could open up the use of different nozzles.

Thanks [Itay] for the tip! Some images courtesy SprayPrinter, via designboom.